
T E C H N I C A L   N O T E

INVENTORY COST EFFECT OF CONSOLIDATING SEVERAL
ONE-WAREHOUSE MULTIRETAILER SYSTEMS

WEI-SHI LIM
Department of Marketing, NUS Business School, National University of Singapore, weishi@nus.edu.sg

JIHONG OU and CHUNG-PIAW TEO
Department of Decision Sciences, NUS Business School, National University of Singapore

bizoujh@nus.edu.sg • bizteocp@nus.edu.sg

Consolidation of warehouses is a new trend in global logistics management, and the reduction in order processing and inventory costs is
often cited as one of the main motivations. In this note we show that when retailers face constant demand rates and their ordering costs are
independent of the warehouse that services them, consolidated systems are rarely suboptimal and always lead to close-to-optimal inventory
replenishment costs. In particular, we prove that using two (one) properly selected warehouses, the systemwide inventory replenishment cost
is in the worst case at most 2% (14.75%) more than the optimal.
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1. INTRODUCTION

Many companies are streamlining their distribution network
by consolidating and centralizing their logistics operations.
The Strategies 2005 Report prepared by leading food dis-
tributors in the United States suggested that warehouse con-
solidation is a key component of the logistic strategy in the
industry (Food Distributor 2000). Consolidation strategy is
also often pursued with great enthusiasm (Weiskott 1998)
in cases in which the products are of high value and low
weight type (as in most electronics components), and when
transportation costs are insignificant compared to inventory
and ordering costs.
Our intent in this note is to examine the benefits of con-

solidation on inventory replenishment cost. Given the pop-
ularity of the consolidation strategy and the common belief
that consolidation helps to reduce systemwide inventory
cost resulting from risk pooling and economies of scale,
we view that it is timely to scrutinize this belief based on a
quantitative model. In a single-echelon system with deter-
ministic demand in which holding and ordering costs at the
retailers are not considered, it is easy to see why consoli-
dation is optimal. In fact, in this case each warehouse acts
as a single-stage EOQ system, and it is well known that
the average inventory replenishment cost at each warehouse
is concave in the demand assigned. Exploiting concavity
property, it is easy to see that the optimal strategy is to
consolidate all demand at a single warehouse.
We show in this note that the same qualitative insight

actually carries over to a two-echelon system in which

both the warehouses and retailers have inventory hold-
ing and ordering costs. In a stable demand environment,
where the retailer ordering costs are independent of the
warehouse that services them, we show that consolidated
systems are rarely suboptimal and always lead to close-
to-optimal inventory replenishment costs. In particular, we
prove that using two (one) properly selected warehouses,
the systemwide inventory replenishment cost is in the worst
case at most 2% (14.75%) more than the optimal. So the
suggestion to managers facing consolidation issues with
stable demand is that savings in inventory replenishment
cost can often be expected, and the spotlight should thus
be on the transportation costs.
We want to caution that the conclusion is reached with-

out consideration of the impact on the operating costs
in order processing, transportation, etc. We would imag-
ine consolidation might lead to increased economies of
scale in purchasing and transportation operations, but unit
transportation costs could increase because the goods are
now shipped over a longer distance. On another front, Teo
et al. (2001), building on the work of Gallego (1998) on
inventory replenishment cost approximation and bounds
for �r�Q� systems, found that if the retailers face random
demands, even in a single-echelon system, consolidating
warehouses of different characteristics may lead to subop-
timal performance and in fact may deviate very far from
the optimal. Teo and Shu (2001) have also recently built
upon the results in this note by devising a column gener-
ation algorithm to solve the general distribution network
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design problem with both inventory and transportation cost
incorporated.
One-warehouse multiretailer systems with deterministic

customer demands have been studied extensively since the
breakthrough work of Roundy (1985) (see the review paper
of Muckstadt and Roundy 1993). The approach to prov-
ing the note’s main results centers around Roundy’s lower
bound for a single one-warehouse multiretailer inventory
system. Let the holding cost rate and the fixed charge at the
warehouse be 2h0 and K0, and at retailer i� i = 1� 	 	 	 �N ,
be 2hi and Ki, and the demand rate at retailer i be �i. Take
the standard assumption that hi >h0 for every i= 1� 	 	 	 �N .
An inventory control policy for the system can be charac-
terized by an N +1-tuple, �T0� T1� 	 	 	 � TN �, where T0 is the
reorder interval at the warehouse and Ti is that at retailer
i, i = 1� 	 	 	 �N . The 98% optimal lower bound obtained
by Roundy (1985) is described precisely in the following
proposition.

Proposition 1. (i) The solution to the following convex
optimization problem,

min
Ti >0� i=0�1�			 �N

K0

T0
+∑

i

Ki

Ti

+�ihiTi+�ih0�max�T0� Ti�−Ti�� (1)

is a lower bound on the average cost of any feasible control
policy, and the solution can be rounded off to obtain a
feasible integer-ratio policy with a cost within 2% of the
minimum of (1).
(ii) In the solution to (1), the retailers can be divided

into three groups: G, L, and E. For the retailers in G, their
reorder interval Ti is given by

Ti =
√
Ki/�ihi > T0�

for the retailers in L, their reorder interval is given by

Ti =
√
Ki/�i�hi−h0� < T0�

and for the retailers in E, their reorder interval is the same
as that at the warehouse and is given by

Ti = T0 =
√[

K0+
∑
i�E

Ki

]/[∑
i�E

�ihi+
∑
i�L

�ih0

]
	

Furthermore,√
Ki/�i�hi−h0�� T0 �

√
Ki/�ihi for all i ∈ E	 (2)

Based on the solution structure as stated in Proposition 1,
we deduce another property of the optimal solution to (1),
�T0� T1� 	 	 	 � TN �, as

K0

T0
+∑

i

(
Ki

Ti
+�ihiTi+�ih0�max�T0�Ti�−Ti�

)

=∑
i∈L

(
Ki

Ti
+�i�hi−h0�Ti

)
+∑

i∈G

(
Ki

Ti
+�ihiTi

)

+K0

T0
+∑

i∈E

(
Ki

T0
+�ihiT0

)
+∑

i∈L
�ih0T0

=∑
i∈L

2�i�hi−h0�
√

Ki

�i�hi−h0�
+∑

i∈G
2�ihi

√
Ki

�ihi

+∑
i∈E

2�ihiT0+2
∑
i∈L
�ih0T0

� 2
∑
i∈L
�ih0T0+

∑
i∈G

2�ihiT0

+∑
i∈E

2�ihiT0�2
N∑
i=1

�ih0T0	 (3)

These properties will be used later to show the following
for many one-warehouse multi-retailer systems:
• If all retailers with reordering cycles greater than or

equal to the reordering cycle of their own warehouse are
moved to a warehouse with a shorter reordering cycle, the
lower bound will not increase.
• If warehouses have only retailers with shorter than

their own reordering cycles, consolidating all retailers in
one of them will not increase the lower bound.
• In general, consolidating two warehouses will not

increase the lower bound more than a factor of 1/9.
The above statements, proved exactly in the next section,

lead to the conclusion of near optimality of consolidation.

2. THE MAIN RESULT

Now suppose there are M � 2 such one-warehouse mul-
tiretailer systems indexed by j = 1� 	 	 	 �M . In system j ,
there are Nj retailers (grouped in set Ij ), whose ordering
interval, demand rates, holding cost rates, and fixed charge
are Tj� i� �j� i�2hj� i, and Kj� i, for i= 1� 	 	 	 �Nj , respectively;
and at the warehouse in system j , the ordering interval,
holding cost rate, and the fixed charge are Tj�0, 2hj�0, and
Kj�0. We note here that all the parameters (including the
ordering cost of the retailer Kj� i) are constants that do not
depend on which warehouse is serving the retailer.
Denote the minimal inventory replenishment cost for sys-

tem j by C∗
j , j = 1� 	 	 	 �M . Then, the optimum systemwide

inventory replenishment cost under the separate systems is
C∗ =∑M

j=1C
∗
j .

We first prove our main result for the case of M = 2.
Given a set of retailers R, define

C1�R�= min
T1�0� T1� i � i∈R

K1�0

T1�0
+∑

i∈R

K1� i

T1� i
+�1� ih1� iT1� i

+�1� ih1�0�max�T1�0� T1� i�−T1� i��
and

C2�R�= min
T2�0� T2� i � i∈R

K2�0

T2�0
+∑

i∈R

K2� i

T2� i
+�2� ih2� iT2� i

+�2� ih2�0�max�T2�0� T2� i�−T2� i�	
Then, by Proposition 1, C1�I1� is a lower bound to C∗

1 ,
C2�I2� is a lower bound to C∗

2 , C1�I1∪ I2� is a lower bound
to the consolidated system with warehouse 1 serving all
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the retailers, and C2�I1 ∪ I2� is a lower bound to the con-
solidated system with warehouse 2 serving all the retail-
ers. If the integer ratio policy derived from the solution to
Cj�I1 ∪ I2� is used to control the consolidated system at
warehouse j , j = 1�2, the following theorem leads to the
conclusion that one of the two consolidated systems will
achieve a cost within �1	02×9/8−1�×100%= 14	75% of
C1�I1�+C2�I2�, which is a lower bound to C∗

1 +C∗
2 = C∗.

Theorem.

min�C1�I1∪ I2��C2�I1∪ I2��
�

9
8
min
R
�C1�R�+C2�I1∪ I2−R���

9
8
�C1�I1�+C2�I2��	

Proof. We just need to prove the first inequality, and for
that, assume �R1�R2 = I1 ∪ I2 −R1� minimizes C1�R�+
C2�I1 ∪ I2 −R�. To simplify the notation, we denote the
optimal solution for C1�R1� (C2�R2�� by �T1�0� T1� i� i ∈R1�

(�T2�0� T2� i� i ∈ R2�). By Proposition 1, in the solution Rj
splits into three groups: Gj , Lj , and Ej , j = 1�2. Suppose
WLOG T1�0 � T2�0. If it is also the case that h1�0 � h2�0,
we can just reassign all the retailers in R2 to warehouse 1,
and their costs would be lower than when served by ware-
house 2. Thus, we have C1�I1∪ I2��C1�R1�+C2�R2�, and
the theorem is proved. So we consider the nontrivial case
in which

h1�0 > h2�0	 (4)

We claim also that we can assume WLOG

T2� i < T1�0 for all i ∈ R2	 (5)

In particular, we have G2 = ∅ and E2 = ∅. Otherwise, if
there is a retailer i ∈ R2 such that T2� i � T1�0, we reas-
sign it to warehouse 1 and take its order interval still as
T2�i. Note that the ordering cost of warehouse 1 does not
change because the ordering interval remains the same.
The cost associated with this retailer in the new assign-
ment is K2� i/T2� i +�2� ih2� iT2� i +�2� ih1�0�max�T1�0� T2� i�−
T2� i� = K2� i/T2� i + �2� ih2� iT2� i, which is no larger than
that in the original assignment, K2� i/T2� i + �2� ih2� iT2� i +
�2� ih2�0�max�T2�0� T2� i�−T2� i�. Because the costs associated
with all other retailers are unchanged, the new assignment
gives another solution that is at least as good as (R1�R2)
in minimizing C1�R�+C2�I1 ∪ I2 −R� and it does have
property (5). If the ordering intervals constructed above are
not optimal under the new assignment (because the optimal
warehouse ordering intervals may have changed under the
new assignment), we have found a new warehouse-retailer
assignment with smaller total inventory cost compared to
�R1�R2�. This gives rise to a contradiction because �R1�R2�

is an optimal solution.
To prove the first inequality in the theorem, we take

a feasible solution for C1�I1 ∪ I2� as �T1�0� T1� i� i ∈ R1�

T2� i� i ∈ R2�. Its cost is

K1�0

T1�0
+∑

i∈R1

{
K1�i

T1�i
+�1�ih1�iT1�i

+�1�ih1�0�max�T1�0�T1�i�−T1�i�
}

+∑
i∈R2

{
K2�i

T2�i
+�2�ih2�iT2�i

+�2�ih1�0�max�T1�0�T2�i�−T2�i�
}

=C1�R1�+C2�R2�+
∑
i∈R2

�2�ih1�0�max�T1�0�T2�i��−
K2�0

T2�0

−∑
i∈R2

�2�i�h2�0�T2�0−T2�i�+h1�0T2�i�

�C1�R1�+C2�R2�+
∑
i∈R2

�2�ih1�0T1�0

−∑
i∈R2

�2�ih2�0T2�0−
K2�0

T2�0
	

The last inequality is due to h1�0 >h2�0. Note that because

G2∪E2 =∅� T2�0 =
√
K2�0/�

∑
i∈R2

�2� ih2�0�, or equivalently,
K2�0/T2�0 =

∑
i∈R2

�2� ih2�0T2�0. We obtain

C1�I1∪ I2�� C1�R1�+C2�R2�

+
(
�2

�1

)
�1h1�0T1�0−2�2h2�0T2�0� (6)

where

�1 =
∑
i∈R1

�1� i� �2 =
∑
i∈R2

�2� i	

Next, take a feasible solution for C2�I1∪I2� as �T2�0� T1� i:
i ∈ R1� T2� i� i ∈ R2�. We can obtain

K2�0

T2�0
+ ∑

i∈R1

{
K1� i

T1� i
+�1� ih1� iT1� i

+�1� ih2�0�max�T2�0� T1� i�−T1� i�
}

+ ∑
i∈R2

{
K2� i

T2� i
+�2� ih2� iT2� i

+�2� ih2�0�max�T2�0� T2� i�−T2� i�
}

= C1�R1�+C2�R2�+
∑
i∈R1

�1� ih2�0�max�T2�0� T1� i�−T1� i�

− K1�0

T1�0
− ∑

i∈R1

�1� ih1�0�max�T1�0� T1� i�−T1� i�

� C1�R1�+C2�R2�+
∑
i∈R1

�1� ih2�0�T2�0�−
K1�0

T1�0
	

Thus, we have

C2�I1∪ I2�� C1�R1�+C2�R2�+
(
�1

�2

)
�2h2�0T2�0	 (7)
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Combining (6) and (7) and choosing two positive numbers
 and !, we have

 C1�I1∪ I2�+!C2�I1∪ I2�
� � +!�C1�R1�+ � +!�C2�R2�

+ 
[
�2

�1

�1h1�0T1�0−2�2h2�0T2�0

]

+!
[
�1

�2

�2h2�0T2�0

]
	 (8)

Choosing

 =�2
1/��1+�2�

2� != 1− �
we can simplify (8) into

 C1�I1∪ I2�+!C�I1∪ I2�
� C1�R1�+C2�R2�

+ �1�2

��1+�2�
2
��1h1�0T1�0+�2h2�0T2�0�	

By (3), we have

C1�R1�� 2�1h1�0T1�0 and C2�R2�� 2�2h2�0T2�0	

So

 C1�I1∪ I2�+!C�I1∪ I2�
�

(
1+ 1

2
�1�2

��1+�2�
2

)
�C1�R1�+C2�R2��	

Note that

1+ 1
2

�1�2

��1+�2�
2
� 1+ 1

8
�

and so the theorem follows. �

Note that inequality (7) is rather loose. This arises
because we are not able to impose a more refined struc-
ture on the optimal ordering intervals in the set R1. If in
the above proof, both G1 ∪E1 and G2 ∪E2 happen to be
empty, the arguments can be tightened to obtain the fol-
lowing stronger result.

Proposition 2. In the case when G1 ∪E1 = ∅ and G2 ∪
E2 = ∅,

min�C1�I1∪ I2��C2�I1∪ I2���min
R
�C1�R�+C2�I1∪ I2−R��

� �C1�I1�+C2�I2��	 (9)

Proof. To see this, note that we can now improve (7) to

C2�I1∪I2��C1�R1�+C2�R2�+
(
�1

�2

)
�2h2�0T2�0−

K1�0

T1�0

=C1�R1�+C2�R2�+
(
�1

�2

)
�2h2�0T2�0

−�1h1�0T1�0	 (10)

The last equality follows from the fact that now L1 = R1.
Because either h1�0T1�0 � 2h2�0T2�0 or h2�0T2�0 � h1�0T1�0,
we have either

�2h1�0T1�0−2�2h2�0T2�0 � 0

or

�1h2�0T2�0−�1h1�0T1�0 � 0	

The result follows from (6) and (10). �

Now we can extend the theorem to the case of M > 2.
Suppose for the optimal separate systems, warehouse 1 has
the shortest ordering cycle, i.e., T1�0 � Tj�0 for all j > 1	
Then, using the same arguments as in the proof of the the-
orem, we can again claim that

Tj� i < T1�0 � Tj�0 for all i ∈ Ij � j > 1	 (11)

In particular, we have Gj ∪Ej = ∅ for j > 1. Thus, by (9),
all the systems other than system 1 can be consolidated
to a single one-warehouse system. Let’s say they are all
consolidated to warehouse 2. Then, we have

C2�I2∪· · ·∪ IM��
M∑
j=2

Cj�Ij��

which implies the following.

Corollary 1. The lower bound to two separate systems
with system 1 serving customers in I1 and system 2 serving
all the other customers is a lower bound for the inventory
replenishment cost function in the separate M systems.

Corollary 2. If consolidating further to a single system,
the total inventory replenishment cost is within 14.75% of
C∗. Specifically, we have

min�C1�I1∪· · ·∪ IM��C2�I1∪· · ·∪ IM���
9
8

M∑
j=1

Cj�Ij�	

Nonoptimality Example

We have performed an extensive numerical study to evalu-
ate empirically the effect of consolidation. For over 10,000
separate systems, consolidation into a single-warehouse
system was always found to be optimal. With consider-
able effort and luck, we managed to find an example with
two separate inventory systems for which consolidating into
a single system leads to higher cost (Table 1). Note that
C1�I1�= 216	7876571 and C2�I2�= 23	75070158.
The two warehouses have vastly different cost structures:

Warehouse 1, with low ordering and high holding cost, is
ideal for cross-docking of inventory to the retailers. Ware-
house 2, on the other hand, is ideal for staging of inventory,
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Table 1.

Ordering Cost Holding Cost Demand

Warehouse 1 serving 3 retailers:
Warehouse 1 K1�0 = 0	19192444 h1�0 = 145	735398
Retailer 1 K1�1 = 2	38191032 h1�1 = 145	7354885 �1�1 = 120	1545886
Retailer 2 K1�2 = 0	009152176 h1�2 = 148	5858742 �1�2 = 0	419055781
Retailer 3 K1�3 = 0	045295548 h1�3 = 145	7353995 �1�3 = 2	114537948

Warehouse 2 serving 1 retailer:
Warehouse 2 K2�0 = 68	4471941 h2�0 = 0	1350449
Retailer 4 K2�1 = 0	000001 h2�1 = 145	73616 �2�1 = 60	54503063

especially for those retailers with high holding cost. Thus,
it is ideal to use warehouse 2 to serve retailer 4.
If we were to use warehouse 1 to serve retailer 4, then

it needs to synchronize its replenishment activities to sup-
port the frequent shipments to retailer 4. This will affect
the cost it incurred to serve the other retailers. In this
case, C1�I1 ∪ I2� = 249	8709473. Similarly, consolidating
all retailers at warehouse 2 is not cost effective, because the
cost of staging inventory at the warehouse increases with
the larger demand now served by the warehouse. Conse-
quently, C2�I1∪ I2�= 249	8709475.
Note that

1	0388× �C1�I1�+C2�I2��=min�C1�I1∪ I2��C2�I1∪ I2��	
Because we know that the convex relaxation is a valid
lower bound and within 2% of the optimal inventory replen-
ishment costs, we obtain an example for which consoli-
dation to a single system is worse off than the separate
systems.
The deviation from optimality is just 1.84% more than

that of the separate ones, far from the theoretical worst-
case bound of 14.75% presented in this note. It is an
interesting problem to find out whether the gap between
the worst case bound and the worst case example can be
narrowed.
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