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The delivery scheduling problem studied in this paper was motivated by the operation in a large personal computer assembly
plant, which was using multisourcing for some of its materials. The company’s objective was to design a delivery schedule
so that the average inventory level in the factory was minimized. We show that the problem is intimately related to a
classical inventory staggering problem, where the focus is on the computation of the peak inventory level associated with
the replenishment policy. This connection allows us to show that the delivery scheduling problem is NP-hard. For the
two-vendor case with integral replenishment intervals, we propose a generalized form of Homer’s scheduling heuristic
and obtain performance bounds for the classical inventory staggering problem. Our analysis uses the Chinese remainder
theorem in an interesting way. The approach can be generalized to the case with more than two vendors, leading to a strong
linear-programming-based lower bound for the inventory staggering problem. We illustrate this technique for the case in
which all the replenishment intervals are relatively prime, establishing a bound that is not greater than 140% of the optimal.
We examine the implications of these results to the delivery scheduling problem.
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1. Introduction
A major focus of the just-in-time (JIT) manufacturing sys-
tem is to improve product quality and productivity through
the elimination of waste from all operations. Waste can be
eliminated by facilitating frequent shipment of purchased
parts in small lots and by manufacturing small lots fre-
quently. Small lot sizes contribute to higher productivity in
a firm through lower levels of inventory and scrap, high
product quality, and increased flexibility. Thus, a prime pre-
requisite for a successful JIT system is the effective linkage
of the JIT producer’s purchasing department and the ven-
dor’s marketing department.

Our study is motivated by precisely these issues in such
JIT inventory systems and is based on a large personal
computer assembly operation. In the plant that we studied,
an internal JIT material flow control system within its
production lines has been in place for some time. Under
this existing JIT system, however, materials from external
vendors are scheduled to arrive in periodic cycles. Broad
parameters on the frequency and size of each delivery
are pre-negotiated in the supply contracts. The details
regarding delivery frequency and timings depend largely

on the distance between the vendors and the factory. They
depend on the replenishment interval, i.e., the time it takes
to bring the order from the factory back to the vendor;
the time it takes to fill the order; and the time it takes to
transport the filled order back to the JIT factory. They also
depend on the number of trucks each vendor has commit-
ted in servicing the JIT factory. Details regarding delivery
quantities are initially agreed upon one week in advance,
based on the upcoming production plan.

These issues of delivery timings and quantities are com-
plicated by the fact that the company uses more than one
vendor for certain parts to minimize the risk of shortages
of parts. The volume of business for each vendor is pre-
determined during the broad contract negotiation process
and thus is an input to the problem. As far as possible, the
vendors would like a stable flow of parts into the factory, on
a periodic basis. This moves the system a step closer to the
ideal of having the vendor and the customer closely cou-
pled. When there are multiple vendors (each with multiple
trucks), the schedules of the vendors (trucks) are usually
time-spliced so that each vendor can potentially supply out
of his production line, running a continuous operation with
steady volume.
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The system described is nonetheless a push system
because material will flow from vendor to the factory
according to the given schedule, regardless of production
rate changes at the factory. Expeditors are hired to manage
the dynamic deviations between delivery and production
requirement. This is also because some vendors have diffi-
culty adhering to the delivery timings and quantities. Con-
tinuous monitoring by the expeditors is necessary to ensure
that the production operation has material to run on. As an
additional safeguard, a large safety stock is kept.

As a first step toward a JIT linkage with their vendors,
management felt that a kanban control system can be put in
place to tie vendors to the actual production rate in the fac-
tory. Taking the delivery schedule as given, controlling the
number of kanbans to be injected into the vendor-factory
interface, and monitoring the allocation of kanbans among
the vendors, the latter’s detailed delivery quantities can be
modified to reflect the actual rates of production pull from
the factory. Our initial study was therefore of helping man-
agement in this operational-level problem of designing and
implementing a kanban system with their vendors, taking
the existing delivery schedules as given.

Although the frequencies and delivery quantities from
the vendors allow the factory to meet its hourly produc-
tion demand, it became obvious to us that the timings of
the vendors’ deliveries had an adverse effect on the aver-
age inventory level in the factory. To minimize the average
inventory level, an obvious strategy is for the vendors to
deliver only when the inventory level of the part at the fac-
tory drops to zero. This is easy to coordinate if the vendors
can expedite deliveries on request, but it will negate the
effectiveness of the kanban system being put in place. Fur-
thermore, this will cause severe disruption to the smooth
flow of parts between the vendors and the factory.

Another way to reduce the average inventory level is to
coordinate the flow of materials among the different vendors
while maintaining the periodicity of the vendors’ delivery
schedule. This can be achieved by staggering the delivery
timings of the trucks from the different vendors. This is
clearly a higher, more strategic-level problem than the initial
operational problem of kanban system design and imple-
mentation.

In this paper, we study this strategic level problem (hence-
forth referred to as the delivery scheduling problem) of find-
ing the best schedule for the deliveries of the supplies from
the vendors. Our methodology is to first establish a relation-
ship between this problem and the well-studied inventory
staggering problem, and then to exploit this relationship to
obtain a good schedule for the delivery scheduling problem.

Now, the inventory staggering problem usually appears
in the context of management of the single-resource con-
strained multi-item inventory system (in short, SRMIS),
studied in Anily (1991), Gallego et al. (1992, 1996), and
Hariga and Jackson (1996). The SRMIS problem seeks to
determine the optimal order quantities and replenishment
epochs for each item so as to minimize average set-up

and inventory-related costs over all item-periodic policies,
given by

M∑
i=1

(
Ki

Ti
+HiTi

)
+�Smax

(
�∗�T1	 T2	 
 
 
 	 TM�

)
	

where Ki and Hi are constants determined by the ordering
and inventory holding costs of the ith item, � is the cost of
unit storage requirement, and �∗�T1	 T2	 
 
 
 	 TM� denotes an
optimal inventory staggering policy in the class of optimal
policies (see Gallego et al. 1996 and Hariga and Jackson
1996 for details on the class of optimal policies). The peak
storage requirement, denoted by Smax��∗�T1	 T2	 
 
 
 	 TM��,
depends on the order intervals Ti and on how the orderings
are staggered relative to one another.

This model was first proposed and studied by Homer
(1966), who assumed that all items share one common
order interval and derived the optimal solution. Later, Page
and Paul (1976), Zoller (1977), and Hall (1988) indepen-
dently rediscovered Homer’s result and proposed heuris-
tics for cases with more than one possible order intervals.
The heuristics first partition the items into clusters, with all
items in each cluster sharing a common order interval, thus
enabling optimal staggering according to Homer’s solution.
However, no attempt was made to deal with the interac-
tions among different clusters. Goyal (1978) argued that if
different clusters are arranged properly, further reduction
in warehouse space requirement is possible. This gives rise
to the inventory staggering problem, in which the objec-
tive is to stagger the given clusters to minimize the peak
inventory storage requirement. The optimal solution for
the two-item inventory staggering problem was obtained
by Hartley and Thomas (1982) and Thomas and Hartley
(1983). Restricting herself to the class of policies called the
stationarity-between-orders policies (SOSI policies), Anily
(1991) performed a worst-case analysis for a class of parti-
tion heuristic. She proved a lower bound on the minimum
required warehouse space and on the total cost for this
class of policies. Gallego et al. (1996) showed that Anily’s
lower bound on the minimum required warehouse size for
SOSI policies is in fact a lower bound for any feasible
policy. They constructed a

√
2-approximation algorithm by

exploiting the observation that the peak inventory level of
any staggering policy is within two times the minimum.
The

√
2 approximation bound for the SRMIS problem can

be improved only if we can manage to address the impact
of staggering on the peak inventory storage requirement.
Teo et al. (1998) studied a special case of the staggering
problem. When the intervals Tis are nested (i.e., Ti divides
Tj whenever i < j), they obtained an improved lower bound
on the peak usage of warehouse space for the inventory
staggering problem. This gave rise to a 15/8 approxima-
tion algorithm for this problem. In the case M = 2, they
obtained a staggering policy with a performance bound
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of 4/3. Note that their results apply only if the order inter-
vals satisfy the nested property.

The above staggering problem is also of interest in logis-
tics management. For instance, Pesenti and Ukovich (2000)
illustrated the relevance of this problem in replenishment
planning to reduce holding cost and space utilization. Let
hk denote the headway (i.e., gap) between the kth and
k+ 1th order. Pesenti and Ukovich seek to derive a stag-
gering policy to minimize the maximum headways (i.e.,
minmaxk hk) and show that this problem has relevance in a
variety of settings. For instance, these problems are relevant
in the case pointed out by Hall (1991), where a product
can be supplied to the same customer with different fre-
quencies. Unfortunately, due to its complexity, very few
results have been obtained for this problem. Burkard (1986)
proved some fundamental results in the case of two peri-
odic orders and obtained the optimal staggering policies in
this special case. Pesenti and Ukovich extended his insights
to a more general version of the problem.

Review of the literature on multisourcing and its bene-
fits can be found in Kratz and Cox (1982), Greer and Liao
(1986), and Horowitz (1986). Note that our focus here is
simply on the delivery-coordination aspect of multisourcing.

In the next section, we formally define this problem and
the associated inventory staggering problem together with
notation to be used. In §3, we demonstrate that the deliv-
ery scheduling problem and the inventory staggering prob-
lem are essentially equivalent. This relationship leads us to
the fact that the delivery scheduling problem is NP-hard.
For the single-vendor case, we provide an optimal schedule
here. The dual-sourcing case is taken up in §4.2. For inte-
gral replenishment intervals, we obtain an approximation
algorithm with a performance bound of at most 134% of
the optimal. In §4.3, we treat the case of more than two
vendors who all have relatively prime replenishment inter-
vals. We again obtain an approximation algorithm whose
performance bound is not more than 140% of the optimal.
In proving the performance bounds, we use the Chinese
remainder theorem in an interesting way. In §5, we examine
the implications of these results for the delivery scheduling
problem. In the final section, we conclude the paper with
a brief review on the results obtained and some possible
extensions.

2. Delivery Scheduling and
Inventory Staggering

2.1. Delivery Scheduling Problem: Definition

As noted above, the delivery scheduling problem is to find
the optimal schedule for the multiple trucks used in deliv-
ering materials from multiple vendors. With the replen-
ishment times being different for different vendors, the
objective is to minimize the average inventory level in the
factory, subject to the constraints that vendors deliver in a
periodic pattern and that there is no stock out in the factory.

Figure 1. Three vendors supplying a factory with truck
fleets.
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To make the matters clear, we illustrate the delivery
scheduling problem with an example that would also be
used to define the parameters and the decision variables of
the problem.

Illustration of the Delivery Scheduling Problem.
Figure 1 shows an example of a material delivery system.
In the example, the factory has three vendors, A, B, and C.
• Vendor A has four trucks making the delivery. Each

circuit is completed in eight hours. Spacing the trucks
equally, this vendor makes a delivery at the factory every
two hours, at 0900, 1100, 1300, etc.
• Vendor B has two trucks making the delivery. Each

circuit is completed in eight hours. Spacing the trucks
equally, the vendor makes a delivery at the factory every
four hours, at 1000, 1400, etc.
• Similarly, vendor C makes deliveries every four hours

with just one truck, at 0930, 1330, etc.
Each truck, after making its delivery, picks up a new

order. This new order quantity is the quantity the same
truck is required to deliver on its next trip. In this way, ven-
dor C in Figure 1 is different from A and B. The truck C1
that carries back the last order is also the one that makes
the next delivery. The interdelivery and order lead times
are four hours each. For vendor A, though the interdeliv-
ery time is two hours, the order lead time is eight hours.
Vendor B, with the same interdelivery time as vendor C,
has a larger order lead time of eight hours. Note that the
above delivery schedule is most natural for the vendors, as
they tend to space out their deliveries to the factory equally
over the time horizon.

Suppose that the factory utilizes the parts at a constant
rate of 480 units in every hour. Assume further that each
delivery from the vendors brings 480 units into the fac-
tory. For vendor A, with an interdelivery time of two hours,
this supply is equivalent to satisfying 240 units per hour
of the demand at the factory. Similarly, vendor B delivers
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Figure 2. Inventory level fluctuation.
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120 units per hour, and vendor C delivers 120 units per
hour. Thus, on a per-hour basis, the supply is enough to
meet the demand for parts in the factory.

Figure 2 shows the fluctuation in the inventory level at
the factory, according to the delivery schedule as shown
in Figure 1. The average inventory level at the factory
over an eight-hour period (after which the schedule repeats
itself) is 540 units. The maximum inventory level reached
is 960 units.

It should be noted that although the delivery times are
periodic, the sequence of deliveries can start at any point
in time. One can easily construct other schedules for the
deliveries, which would result in different values for the
average and the peak inventory levels in the factory.

Specifically in the sequel, we consider a factory that is
supported by M vendors. Without loss of generality, we
assume that the part is consumed at a rate of 1 unit per unit
time. Vendor i has ni trucks where

∑M
i=1 ni = n, with each

truck making a delivery to the factory at every Ti unit inter-
val. We assume that vendors with the same replenishment
intervals are grouped together, which allows us to treat
these as deliveries from a single vendor. Thus, the trucks
from this vendor (or from this group of vendors) may have
different delivery quantities. With this grouping of vendors,
we can further assume that the replenishment intervals for
the vendor groups are all distinct. In what follows, we will
take each vendor group to be a single vendor. Note that
without loss of generality, we may assume that all replen-
ishment intervals are rational. Otherwise, if the ratio of the
replenishment intervals of two vendors is irrational, then
no matter how best we try to coordinate the delivery sched-
ule, because of the periodicity of the delivery timings we
cannot avoid deliveries from the two vendors to the factory
occurring at approximately the same time, some time into
the future. Henceforth, we assume that the replenishment
intervals are rational, and thus by scaling, we can assume
that the intervals are all integers.

The unit demand rate in the factory is divided among the
vendors in the proportion �1 � �2 � · · · � �M , with

∑M
i=1 �i = 1.

As pointed out earlier, this allocation is decided at the time
of contract negotiation with the vendors. Each vendor, in
turn, divides this allocation among the trucks the vendor
possesses. If truck j belongs to vendor i, we let �ij denote
the proportion of demand allocated to that truck. Note that∑ni

j=1 �ij = �i. As the delivery interval from vendor i is Ti,
in each trip, truck j will bring �ijTi unit of inventory to the
factory.

For the example described above, we have M = 3 with
n1 = 4	 n2 = 2	 n3 = 1, and n = 7. Further, T1 = 8	 T2 = 8,
and T3 = 4. The demand allocation is �1 � �2 � �3 = 1/2 �
1/4 � 1/4. For each i, �ij are equal.

The decision here is to obtain a delivery schedule, so the
decision variables are
tij : instant in �0	 Ti� at which truck j from vendor i makes

a delivery.
We are now in a position to formulate the delivery

scheduling problem. Note that the sequence of deliveries
from vendor i will take place at regular Ti interval. Truck j
from vendor i brings an amount of �ijTi material to the fac-
tory, which will be consumed at a rate of �ij . Overall, the
total consumption at the factory is thus

∑
ij �ij =

∑
i �i = 1.

Let gij�t� be the amount of inventory of parts brought
into the factory by truck j from vendor i, at time t. To pre-
vent stocking out at the factory, we need a certain amount
of inventory in the factory at time 0. For example, we may
assume that the inventory level at time 0 is

∑
i	 j �ij tij , where

�ij tij units are attributed to truck j from vendor i. In this
way, the inventory level of the parts brought into the fac-
tory, by truck j from vendor i, can be represented by the
function

gij�t�=




�ij�tij − t�	 0� t < tij 	

�ij �Ti + tij − t�	 tij � t < Ti + tij 	

gij �t− Ti�	 t � Ti + tij 


Note that
∑

ij gij �0�=
∑

ij �ij tij .
Using this amount of initial inventory, the factory will

have no problem supporting the delivery schedule, given
any tij . However, it is stocking more than the necessary
material required. Let

Smin���=min
t�0

( M∑
i=1

ni∑
j=1

gij�t�

)
	

where Smin��� is called the protection level of the schedul-
ing policy �. At any point in time, there is at least Smin���
units of inventory in the factory. By reducing this amount
of inventory from the initial inventory at time 0, we will
still have enough material to support the delivery schedule
tij , without incurring stock-out. Let

G�t�=
( M∑
i=1

ni∑
j=1

gij�t�

)
− Smin���



Hum, Sharafali, and Teo: Staggering Periodic Replenishment in Multivendor JIT Environments
702 Operations Research 53(4), pp. 698–710, © 2005 INFORMS

denote the new inventory level at the warehouse at time
t, after reducing the initial inventory from

∑
ij �ij tij to∑

ij �ij tij − Smin��� units. Note that G�t�� 0, and

lim
T→


1
T

∫ T

0
G�t�dt

is the average inventory level associated with the delivery
schedule given by tij , using the minimum level of initial
inventory at time 0. The delivery scheduling problem can
be stated as follows:

min
tij � Ti�tij>0

lim
T→


1
T

∫ T

0

(( M∑
i=1

ni∑
j=1

gij�t�

)
− Smin���

)
dt


Note that the average inventory level for all items is
given by

lim
T→


1
T

∫ T

0

M∑
i=1

ni∑
j=1

gij�t�dt =
1
2

M∑
i=1

ni∑
j=1

�ijTi	

because the inventory level for parts brought in by truck j
from vendor i fluctuates like an EOQ model, and has aver-
age inventory level of �1/2��ijTi. The average inventory
level in this case does not depend on the staggering pol-
icy �tij �.

The challenge in the delivery scheduling problem is thus
to maximize the protection level, Smin���.

2.2. Inventory Staggering Problem: Definition

Consider a multi-item warehouse supplying distinct parts
to an assembly plant. The primary issue in the management
of this warehouse is to ensure that there is always enough
space to accommodate all the deliveries with no disruption
to the assembly operation. We assume that the management
of each part in the warehouse follows an EOQ model. It is
evident that the demand for the warehouse space is the
highest when all the parts deliveries arrive at the same time.
By staggering or time-phasing these deliveries, the peak
demand on the warehouse space can be moderated (Hariga
and Jackson 1996). Staggering orders not only results in
efficient use of warehouse space, but also reduces the cost
of holding parts in the warehouse.

For the above inventory staggering problem, consider a
policy �. Let ni be the number of parts with reorder inter-
val Ti, i= 1	2 
 
 
 	M . Let �ij denote the rate of consump-
tion of part j with re-order interval Ti. Let this part be
denoted as part �i	 j�.

Let tij be the delivery instant for part �i	 j� that takes
place in �0	 Ti�. After this, the delivery of that part will
take place at a regular Ti interval. Each delivery brings
an amount of �ijTi material to the plant, which will be
consumed at a rate of �ij . As in the case of the delivery
scheduling problem, let gij�t� denote the amount of inven-
tory of part �i	 j� in the warehouse at time t. Note that the
inventory level at time 0 is �ij tij for part �i	 j�, so that the

warehouse would have enough material for part �i	 j� to
last till the first delivery after time 0. Thus, as before,

gij�t�=




�ij�tij − t�	 0� t < tij 	

�ij �Ti + tij − t�	 tij � t < Ti + tij 	

gij �t− Ti�	 t � Ti + tij 


The inventory staggering problem aims to minimize the
peak inventory usage and is defined as

min
tij � Ti�tij>0

max
t

( M∑
i=1

ni∑
j=1

gij�t�

)



We can define an analogous notion of the protection
level, for any staggering policy, to be the minimum level
of the inventory of all the parts over all time. This is again
denoted by Smin���=mint�0�

∑M
i=1

∑ni
j=1 gij�t��.

3. Average, Minimum, and Maximum
Inventory Levels

Next, we show that the delivery scheduling problem (maxi-
mize minimum inventory level) is connected to the classical
inventory staggering problem (minimize maximum inven-
tory level). To this end, we first identify below a dual con-
struction that yields a useful and interesting conservation
law in this class of scheduling problems.

For any staggering schedule �, let Smax��� be the peak
storage usage needed. Let Smin��� be the minimum amount
of inventory in the factory at all time (i.e., the protection
level for the schedule �). Although we define the stagger-
ing policy for time t � 0, it is convenient to extend the
staggering policy to all t from −
 to 
, while maintaining
the fixed ordering interval of Ti for each i.

For each schedule �, we can construct a delivery sched-
ule � (called dual of policy �) in the following way:
• Let �tij � be the staggering solution obtained under

schedule � in the staggering problem.
• Let �t′ij ≡ −tij mod�Ti�� be the staggering solution

obtained for part �i	 j� in �.
Note that the first delivery of part �i	 j� in schedule �

after time 0 is at time tij , whereas the first delivery for
schedule � after time 0 is at time Ti− tij . The last delivery
before time 0 in schedule � is thus at time −tij . Intuitively,
the delivery schedule � is obtained by reversing the direc-
tion of time in the staggering schedule �.

Theorem 1. For all staggering schedules �, Smax��� +
Smin���=∑

i �iTi.

Proof. For ease of exposition, we can assume that each
vendor has only one truck, for if a vendor has more than
one truck, then each truck can be imagined to be owned by
a different vendor. Thus, the proof for the multiple trucks
extension is straightforward. Hence, part �i	 j� is now writ-
ten simply as part i.



Hum, Sharafali, and Teo: Staggering Periodic Replenishment in Multivendor JIT Environments
Operations Research 53(4), pp. 698–710, © 2005 INFORMS 703

Let L��	 t� denote the aggregate inventory level in the
factory at time t. Let ai�t� be the time from t to the next
arrival of order for part i. Hence,

L��	 t�=
M∑
i=1

�iai�t�


Let t− bi�t� denote the instant of the most recent delivery
for part i before time t in �.

In the schedule �, this corresponds to the time from −t
to the next delivery for part i. This duration is bi�t� (by
construction of �). Hence,

L��	−t�=
M∑
i=1

�ibi�t�


Because

ai�t�+ bi�t�= Ti for all i	

we have

L��	 t�+L��	−t�=
M∑
i=1

�iTi for all time t


Hence, L��	 t� attains its maximum if and only if L��	−t�
attains its minimum, so Smax���+ Smin���=∑

i �iTi. �

Note that by symmetry,

Smax���+ Smin���=∑
i

�iTi

and

Smax���− Smin���= Smax���− Smin���


If Smax���� Smax���, then Smin���� Smin���.
Let �∗ be the schedule that minimizes the peak inventory

level in the factory. Let �∗ be the dual schedule obtained
by reversing the direction of time using �∗. For any policy
� with associated dual schedule �,

Smax��∗�� Smax���	 (1)

and therefore,

Smin��∗�� Smin���
 (2)

The above result shows that the optimal schedule that
maximizes the protection level can be obtained from the
dual of the optimal policy that minimizes the peak storage
usage. Because the delivery scheduling problem is equiv-
alent to the protection level maximization problem, this
shows that the delivery scheduling problem is as hard as
the inventory staggering problem.

Gallego et al. (1992) showed that the inventory stagger-
ing problem is NP-hard (cf. Theorem 1 in Gallego et al.
1992). In fact, their proof actually shows that the stagger-
ing problem is NP-complete in the strong sense, even if
only one item has a different re-order interval. Combining
this with Theorem 1, we have Corollary 1.

Corollary 1. The delivery scheduling problem is strongly
NP-hard, even in the case when all replenishment intervals
are in �1	 k�, where k > 1 is some integer.

A well-known result for the inventory staggering prob-
lem states that (cf. Gallego et al. 1996)

Smax����
1
2

∑
i	 j

�ij �1+�ij�Ti (3)

for all inventory staggering policy �. We have, via
Theorem 1, the following lower bound for the delivery
scheduling problem.

Theorem 2. The minimum average inventory level in the
delivery scheduling problem

min
tij � tij�0	 tij�Ti

lim
T→


1
T

∫ T

0
�G�t��dt

is bounded below by

1
2

∑
i	 j

�2
ijTi


Proof. Note that

min
tij � tij�0	 tij<Ti

lim
T→


1
T

∫ T

0
G�t�dt = 1

2

∑
i	 j

�ijTi −max
�

Smin���


From Theorem 1, Smax���+Smin���=∑
i	 j �ijTi, and from

(3), we have

min
tij � tij�0	 tij�Ti

lim
T→


1
T

∫ T

0
G�t�dt =min

�
Smax���− 1

2

∑
i	 j

�ijTi

�
1
2

∑
i	 j

�2
ijTi
 �

4. Inventory Staggering Problem
Because for certain choices of replenishment intervals the
optimal protection level for the delivery scheduling prob-
lem can be arbitrarily small, it seems difficult to analyze
the performance of heuristics for this class of problems.
In the rest of this paper, we will circumvent this difficulty
by focusing on the inventory staggering problem by mini-
mizing the peak of the inventory level in the system. Our
analysis focuses on the worst-case bound for the inventory
staggering problem. Note that a good solution for the inven-
tory staggering problem can be used to construct a good
dual policy for the delivery scheduling problem.

4.1. Single-Vendor Case
�M = 1� n1 = n��ij = �j� Ti = T 	

In the case of the single-vendor problem, it turns out that
the inventory staggering problem (and hence the deliv-
ery scheduling problem) can be solved to optimality by a
simple algorithm due to Homer (1966). This can be used
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Figure 3. Optimal schedule for the delivery scheduling
and inventory staggering problem.

Homer's Approach: Optimal Policy for Inventory Staggering Problem
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Optimal Policy for Delivery Scheduling Problem

to construct the optimal policy for the delivery schedul-
ing problem: Arrange the trucks in any order, say from
1	2	 
 
 
 	 n, and stagger the deliveries of the trucks such that
the intervals between truck j and j + 1 is �jT . This policy
is precisely the dual of the optimal policy as constructed
by Homer (1966). Note that the Tis for all the trucks are
identical, and

∑
i �i = 1 by definition. Figure 3 shows the

optimal delivery schedule for both inventory staggering and
delivery scheduling problems.

Homer’s policy for the inventory staggering problem
works by observing that when truck 1 with a load of �1T
arrives, the inventory in the factory would have depleted
by an amount equivalent to �1T (the demand rate is 1, and
the time between arrivals of truck n and truck 1 is �1T ).
Hence, the load delivered by truck 1 is just enough to
replace what has been consumed. This property holds for
all other deliveries.

The optimal policy for the delivery scheduling works in
the opposite manner: Truck 1 arrives only at the instant
when the load brought by truck n has just been consumed
in the factory; i.e., truck 1 arrives at a point when the
inventory level in the factory drops to zero. This property
extends to all other deliveries in the schedule. Hence, the
optimal policy is similar to the JIT zero-inventory policy
often practiced in the industry.

In the optimal solution to the delivery scheduling
problem, the average inventory level attains a value
�1/2�

∑n
j=1 �

2
j T . Note that this is the lower bound obtained

in Theorem 2. The optimal peak inventory level in the cor-
responding inventory staggering problem attains a value
�1/2�

∑n
j=1��j +�2

j �T .
Note that an implicit assumption in the above is that∑
i �i = 1, the demand rate, so that the supply matches the

demand. If
∑

i �i = d for some demand rate d, then the

optimal schedule will have to be scaled by a factor d.
The peak inventory level for the inventory staggering prob-
lem, in this case, will attain a value

1
2

∑
i

��i�

(
1+ �i

d

)
T 


In the rest of this section, we discuss the two-vendor and
multivendors problem.

4.2. Two-Vendor �M = 2	 Problem with
General Ordering Intervals

We show that a simple heuristic can be used to construct
a good staggering schedule for the two-vendor case, such
that the peak inventory level will not be far off the optimal
solution. Without loss of generality, we can assume that the
delivery intervals of the two vendors are T1 = p and T2 = q,
where p and q are relatively prime and p < q. Otherwise,
if T1 and T2 share a common factor, by proper scaling we
can reduce the problem to this case where the intervals are
relatively prime. Teo et al. (1998) established a 4/3 approx-
imation bound for the inventory staggering problem using
a complicated policy for the case when the two intervals
are nested (i.e., p = 1). We extend this result to the case
in which the intervals are not necessarily nested. To aid
our analysis, we use the Chinese remainder theorem, the
statement of which follows.

Theorem 3 (Chinese Remainder Theorem). Let m1,
m2	 
 
 
 	mk be pairwise relatively prime integers. If a1,
a2	 
 
 
 	 ak are any integers, then
• there exists an integer a such that a≡ ai mod mi	 i=

1	2	 
 
 
 	 k, and
• If b≡ ai mod mi	 i= 1	2	 
 
 
 	 k, then

b≡ a�mod m1m2	 
 
 
 	mk�


Now, let �∗ be the optimal policy for the two-vendor
problem above. We split the schedule obtained into two
parts, one for each vendor. Let Ui denote the instances
where the inventory level due to vendor i alone (in sched-
ule �∗) is at its peak. Let Si denote the corresponding peak
inventory level for vendor i. By the periodic nature of the
deliveries, the peaks will be reached at regular Ti unit inter-
vals. Without loss of generality, we may also assume that
0 ∈U2.

Let

d�U1	U2�=min��u− v�� u ∈U1	 v ∈U2�


We argue next that the distance d�U1	U2� between the two
sets U1 and U2 is small.

Let u ∈ U1. Suppose that u lies between the integers N
and N + 1, with u=N +'. As an immediate consequence
of the Chinese remainder theorem, there exists an integral
solution to the equations

T ≡ 0 mod q	 T ≡N mod p
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This assures that in the optimal policy, there exists a point
T in time so that the inventory due to vendor 2 will be at
its peak (because 0 ∈U2	 T ≡ 0 (mod q)), whereas the peak
inventory level due to vendor 1 will be reached ' time unit
later.

Because the inventory for vendor i is consumed at a rate
of

∑ni
k=1 �i	k, the peak cumulative inventory level for �∗ is

at least the inventory level at time T +':

S1 + S2 −'
n2∑
k=1

�2	 k = S1 + S2 −'�2


By the Chinese remainder theorem again, there exists an
integral solution to the equations

T ′ ≡ 0 mod q	 T ′ ≡ �N + 1� mod p


This assures that in the optimal policy, there exists a point
T ′ in time so that the inventory due to vendor 2 will be at
its peak, whereas the inventory due to vendor 1 would have
peaked �1−'� time unit earlier.

The inventory level at time T ′ (when vendor 2 attains
peak inventory level) is another lower bound to the peak
inventory level. This gives rise to another inequality:

Smax��∗�� S1 + S2 − �1−'��1


Note that

min�'�2	 �1−'��1��
'

q

( n2∑
k=1

�2	 kq

)

and

min�'�2	 �1−'��1��
1−'

p

( n1∑
k=1

�1	 kp

)



Hence,

Smax��∗�� S1 + S2 −
1

q/'+p/�1−'�

(∑
i	 k

�i	 kTi

)

 (4)

Because Smax��∗�� �1/2�
∑

i	 k �i	 kTi, we have

S1 + S2 �

(
1+ 2

q/'+p/�1−'�

)
Smax��∗�


Note that the value Si is obtained by examining the peak
inventory storage of vendor i alone. It cannot be less than
the value we would obtain if we stagger the deliveries
from vendor i in intervals of ��i	k/�i�Ti, using Homer’s
approach.

Now consider the following scheduling policy.
Generalized Homer’s Policy: For i= 1	2	 
 
 
 	
• Let Li be the set of trucks from vendor i.
• Schedule the deliveries of the trucks from vendor i

using Homer’s approach for a single vendor.

Note that in the above scheduling policy, we do not
attempt to coordinate the deliveries from different vendors.
Furthermore, it is the most natural policy in use because
vendors tend to space out their delivery intervals evenly, if
the load assigned to each delivery is identical. The result-
ing policy which ignores the effect of staggering across two
different vendors will attain a peak inventory level of at
most S1 + S2. The worst-case performance of this policy
will thus depend on the value(

1+ 2
q/'+ �p/�1−'�

)



This bound is maximized when

1−'=
√
pq−p

q−p
	

with the corresponding worst-case value

1+ 2
�
√
p+√

q�2



We tabulate the worst-case bounds for a few values of p	q:

p q Bound

2 1 1.343145751
3 1 1.267949192
3 2 1.202041029
4 3 1.143593539
5 2 1.150098818
5 3 1.127016654
5 4 1.111456180
6 5 1.091097700

For all values of p and q, note that we obtain an approx-
imation algorithm of at most 1.343 for the two vendor
situation.

It is interesting to note from the above analysis that if p
and q are large, then as long as we ensure that the deliveries
from each vendor are staggered using Homer’s approach,
the resulting staggering schedule will not be much worse
off than the optimal policy. However, the better approxima-
tion bound for larger p and q arises mainly because coor-
dination across different replenishment intervals is futile in
these cases, it is thus easier to construct an algorithm with
a better approximation bound. However, it does not imply
that the factory is better off having two vendors with large
relatively prime replenishment intervals p and q; it sim-
ply means that the generalized Homer’s policy is already
very effective in these cases, and that there is no further
need to synchronize the schedules for vendors with differ-
ent replenishment intervals. The slightly larger worst-case
bound, for say the case p = 2	 q = 1, means that there is
room for further improvement should we try to synchronize
the schedule across different vendors. We refer the readers
to Teo et al. (1998) for synchronization strategies across
items with nested replenishment intervals.

We state the above result formally, in the most general
case, as the following theorem.
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Theorem 4. For a two-vendor inventory staggering prob-
lem, with delivery intervals of T1 and T2, as long as the
schedule for each vendor follows Homer’s policy, the peak
inventory level of the resulting inventory staggering sched-
ule is at most

max
0�'�1

(
1+ 2gcd�T1	T2�

T2/'+T1/�1−'�

)

=1+ 2(√
T2/�gcd�T1	T2��+

√
T1/�gcd�T1	T2��

)2

times of the optimal.

It should be noted that the approximation bound is sensi-
tive to the choice of the replenishment intervals Ti. It goes
to show that the selection of Ti can play a big role in the
effectiveness of the delivery scheduling policies. To illus-
trate this point, it is worthwhile to make a comparison
of the peak inventory level attained when (i) T1 = 120,
T2 = 60, and when (ii) T1 = 120	 T2 = 59. To simplify the
discussion, we assume that there are only two items each
with replenishment interval T1 and T2, and the consump-
tion rate for the two items are identical (say 1/2 per unit
time). In case (i), the generalized Homer’s heuristic attains
a worst-case bound of 1.343. This should not be too sur-
prising, because the generalized Homer’s heuristic does not
attempt to synchronize the deliveries for the two items at
all. However, if we stagger the deliveries so they are at time
periods �
 
 
 	0	120	240 
 
 
� and �
 
 
 	30	90	150 
 
 
�, then
it is easy to see that the peak inventory level is attained
at time 0 with inventory level of only 75 units. On the
other hand, in case (ii), the generalized Homer’s heuristic
attains a worst-case bound of 1.00576. However, because
the replenishment intervals are relatively prime, there will
be an instance in time where the two items will be delivered
to the factory at around the same time, raising the inven-
tory level to close to 60+ 29
5= 89
5 units. This is higher
than what we can achieve with better synchronization in the
first case. It is thus obvious that case (i) will be preferred
to case (ii), although the approximation bound in case (i)
is better than the bound obtained in case (ii). In general,
finding the best combination for T1 and T2 seems to be an
exceedingly difficult problem.

In the rest of this section, we describe how the analysis
can be extended to the case with more than two vendors.
In particular, we show that the generalized Homer’s policy
is a 1.4-approximation algorithm, when all replenishment
intervals are relatively prime.

4.3. Multivendor Case

Let �∗ be an optimal policy for the inventory staggering
problem with M vendors. We split the schedule obtained
into M parts, one for each vendor. Let Ui denote the
instances where the inventory level due to vendor i alone
(in schedule �∗) is at its peak. Let Si denote the corre-
sponding peak inventory level. By the periodic nature of

the deliveries, the peaks will be reached at regular Ti unit
intervals. Without loss of generality, we assume that 0 ∈U1.

Consider the case where the delivery intervals Ti are all
relatively prime.

Let ui ∈Ui	 i > 1. Suppose that ui lies between the inte-
ger Ni and Ni + 1, with ui = Ni +'i. We order the 'i	 i=
1	2	 
 
 
 	M such that '1 = 0� '2 � '3 � · · ·� 'M .

As an immediate consequence of the Chinese remainder
theorem, there exists an integral solution to the equations

T ≡ 0 mod T1	 T ≡Ni mod Ti for all i > 1


This assures that in the optimal policy, there exists a point
T in time so that the inventory due to vendor 1 will be at
its peak, whereas the peak inventory level due to vendor i
will be reached 'i time unit later.

Consider the total inventory at time T +'M . The inven-
tory level due to vendor M is at its peak, and the inventory
level due to vendor j (j �=M) is at most �'M − 'j��j off
its peak, because the peak was attained only 'M −'j time
units ago and the maximum inventory depletion rate is �j .
Thus, we obtain a lower bound for the optimal total inven-
tory to be

Smax��∗��
M∑
j=1

Sj −
M∑
j=1

'Mj�j	 (5)

where

'Mj = 'M −'j	 j = 1	2	 
 
 
 	M
 (6)

Similarly, for any given i = 2	 
 
 
 	M , by the Chinese
remainder theorem again, there exists an integral solution
to the equations

T ≡ 0 mod T1	

T ≡Nj mod Tj if j < i	 j �= 1	

T ≡ �Nj + 1� mod Tj if j � i


This assures that in the optimal policy, there exists a
time T at which the inventory due to vendor 1 will be at
its peak, whereas the peak inventory level due to vendor
j (j < i	 j �= 1) would be reached 'j time units later. For
all vendors j with j � i, the inventory would have peaked
1−'j time units earlier. Now, as before, consider the total
inventory at time T + 'i. The inventory due to vendor j
(j < i) would have reached its peak 'i − 'j units earlier,
whereas the inventory due to vendor j (j � i) would have
reached its peak 'i+ �1−'j� units earlier. We obtain other
lower bounds for the optimal total inventory to be

Smax��∗��
M∑
j=1

Sj −
M∑
j=1

'ij�j	 i= 2	3	 
 
 
 	M	 (7)

where

'ij =




'i −'j if j < i	

0 if j = i	

'i + 1−'j if j > i


Note that 'ij +'ji = 1 for all i �= j .
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Let

z= min
1�i�M

{ M∑
j=1

'ij�j

}

 (8)

Let ) be such that

z= )

2

M∑
j=1

�jTj 
 (9)

Using the fact that

Smax��∗��
1
2

M∑
j=1

�jTj

and

Smax��∗��
M∑
j=1

Sj − z	

we obtain that
M∑
j=1

Sj � �1+ )�Smax��∗�
 (10)

Let ZH be the peak inventory storage obtained using the
generalized Homer’s policy. Clearly, ZH �

∑
j Sj . Hence,

the generalized Homer’s policy is a �1+ )�-approximation
algorithm.

To find the worst-case behavior of the generalized
Homer’s policy, we need only to solve the following LP:

z∗ =max z	

s.t.
M∑
j=1

'ij�j � z	 i= 1	2	 
 
 
 	M	

'ij +'ji = 1 for all i �= j	

'ii = 0 for all i= 1	2	 
 
 
 	M	

'ij � 0 for all i �= j


By taking

)∗ = 2z∗∑M
j=1 �jTj

	

we obtain a worst-case performance ratio of �1+ )∗�.
In the remainder of the paper, we focus on finding a

bound for )∗ without solving the LP. In fact, we note from
aggregating constraints (11) that
M∑
i=1

�i

( M∑
j=1

'ij�j

)
�

M∑
i=1

�iz	

and because
∑M

i=1 �i = 1, 'ij +'ji = 1, and 'ii = 0,

z∗ �
M∑
i=1

∑
j>i

�i�j (16)

= 1
2

(( M∑
i=1

�i

)2

−
M∑
i=1

� 2
i

)
(17)

= 1
2

(
1−

M∑
i=1

� 2
i

)

 (18)

Figure 4. Plot of g��1	 �2� with �1 + �2 � 1.
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This gives rise to

)∗ �
1−∑M

i=1 �
2
i∑M

i=1 �jTj



For M > 2, with T1 � 1, T2 � 2, and Ti � 3 for i� 3, the
right-hand side is bounded above by

g��1	 �2�≡
1− � 2

1 − � 2
2

�1 + 2�2 + 3�1− �1 − �2�
	

subject to �1 + �2 � 1.
A plot of the function g�·	 ·� is as shown in Figure 4.
The maximum is attained at �2 = 0
4, �1 = 0
2, with a

value of g�0
2	0
4�= 0
4. Hence, the generalized Homer’s
policy has a worst-case performance of 1.4.

Theorem 5. For the multivendor delivery scheduling prob-
lem, when the intervals Ti are relatively prime, the peak
inventory level attained by the generalized Homer’s policy
is at most 140% of the optimal peak inventory level.

5. Delivery Scheduling Problem
While a good policy for the inventory staggering prob-
lem can be used to construct a good policy for the deliv-
ery scheduling problem, the worst-case results obtained for
the inventory staggering problem do not carry over to the
delivery scheduling problem. In general, if � is a �1+ +�
approximation algorithm for the inventory staggering prob-
lem, then we have

Smax�P�� �1+ +�Smax��∗�


Hence,

Smax�P�− 1
2

∑
i	 j

�ijTi

� �1+ +�

(
Smax��∗�− 1

2

∑
i	 j

�ijTi

)
+ +

(
1
2

∑
i	 j

�ijTi

)
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So from Theorem 1,

1
2

∑
i	 j

�ijTi − Smin�Q�

� �1+ +�

(
1
2

∑
i	 j

�ijTi − Smin��∗�
)
+ +

(
1
2

∑
i	 j

�ijTi

)
	

i.e., the policy � for the delivery scheduling problem is
within �1+ +� times of the optimal solution, plus an addi-
tive term of +��1/2�

∑
i	 j �ijTi�. From Theorem 1 and (3),

1
2

∑
i	 j

�ijTi − Smin��∗�= Smax�P�− 1
2

∑
i	 j

�ijTi �
1
2

∑
i	 j

�2
ijTi


Hence, we conclude that the policy � is a

1+ +

(
1+

∑
i	 j �ijTi∑
i	 j �

2
ijTi

)

approximation algorithm for the delivery scheduling prob-
lem. The bound is thus data dependent. It could be bad if
the number of trucks used is large for each vendor. This
is not surprising, because the lower bound for the delivery
scheduling problem can be very bad in a situation when
the deliveries from the vendors are clustered together in the
optimal solution.

In general, finding a delivery scheduling policy with
good (constant) worst-case bound is a challenging and
exceedingly difficult problem. Nevertheless, the analysis
performed in the previous section can be used to obtain
insights on the behaviour of the (dual) generalized Homer’s
policy for the delivery scheduling problem. This policy is
natural and easy to implement in practice and does not
involve coordination between vendors with different replen-
ishment intervals. It involves only coordination of deliveries
for vendors with the same replenishment intervals.

Consider the case in which there are only two distinct
replenishment intervals. The worst-case error, based on our
analysis (cf. (4)) for the two-vendor case, depends on the
term

+= max
'�0�'�1

2
q/'+p/�1−'�

	

and the relative magnitude of the terms �1/2�
∑

i	 j �ijTi and
�1/2�

∑
i	 j �

2
ijTi. For replenishment intervals T1 and T2 with

large relatively prime factors of p and q, the term + can
be extremely small, and the generalized Homer’s policy is
expected to be pretty good.

As an illustration of the usefulness of the generalized
Homer’s policy, we consider the numerical example dis-
cussed earlier (as shown in Figure 1). Note that the delivery
intervals for vendors A and B are identical. Assuming that
each truck carries the same load, the generalized Homer’s
policy will thus focus on coordinating the deliveries from
these vendors and space out the trucks from both vendors

equally over the time horizon. Consider the following deliv-
ery schedule:
• Vendor A delivers in the morning, at 0900, 1020,

1140, and 1300, after which her schedule will repeat at
eight-hour intervals.
• Vendor B delivers in the afternoon at 1420 and 1540,

after which her schedule will repeat at eight-hour intervals.
• Vendor C’s delivery schedule remains the same as

before, i.e., vendor C delivers at 0930, after which deliver-
ies occur at four-hour intervals.

The new inventory level fluctuation is as shown in
Figure 5. Note that unlike the previous case, the four trucks
from vendor A are not spaced out at equal intervals of two
hours each. Instead, the delivery interval between succes-
sive trucks are 1 hour 20 minutes (three times) and four
hours (once). Nevertheless, each truck takes eight hours to
complete a circuit.

With the delivery quantities remaining the same as in
the last example, the average inventory level for this new
schedule is only 420 units, a drop of 22% compared to
the original schedule. Furthermore, the peak inventory level
drops to 800 units (a reduction of 16.7%).

To further improve the performance of the delivery
schedule, we need to next look at synchronizing the activ-
ities across vendors with different replenishment intervals.
To this end, we note that the deliveries for vendor C (at time
0930, 1330, etc.) arrive at the factory when there are still
excess inventory. To further reduce the inventory level we
can push the deliveries from vendor C to a later time. To
prevent stock-out at the factory, and keeping the delivery
schedules from vendors A and B unchanged, the latest per-
missible delivery times for vendor C are 1000, 1400, etc.
By this adjustment to the schedule, it is easy to see that the
average inventory level drops by a further 6 units to 414
units.

By fine-tuning the schedules obtained from the general-
ized Homer’s policy, improvement in the delivery perfor-
mance is possible, especially if the delivery intervals are

Figure 5. Inventory level fluctuation for the new
schedule.
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nested. Another possible way to improve the performance
of the delivery scheduling problem is to lengthen the deliv-
ery intervals for some of the vendors. In this way, we need
to choose the best combination of replenishment intervals
for the vendors (subject to some lower bound constraints)
so that the average inventory in the factory is minimum. Let
�T

′
i � denote the optimal combination of the replenishment

intervals, subject to T
′
i � Ti, where Ti is the lower bound

to the replenishment intervals. It is easy to see that in the
optimal solution, T

′
i < 2Ti. Otherwise, by replacing T

′
i by

T
′
i /2, the average inventory level in the new schedule will

be smaller. This observation allows us to restrict the pos-
sible values for T

′
i in the range .Ti	2Ti − 1�. The optimal

combination of the replenishment parameters can thus be
searched via enumerating over the possible values of T i

i .

6. Concluding Remarks
In this paper, we study the delivery scheduling problem
faced by a factory in a multivendor JIT environment.
We show that the problem is rich in structure. We establish
a fundamental relationship between the peak, the minimum
and the average inventory level in this class of problems,
and use it to show that the delivery scheduling problem
is equivalent to the classical inventory staggering problem.
This connection appears to be interesting but nontrivial
because this relates the time average objective function in
the delivery scheduling problem to the min-max objective
function in the inventory staggering problem.

We thus focus our attention on the inventory stagger-
ing problem. By examining the periodicity structure of the
schedule using the Chinese remainder theorem, we show
that the generalized Homer’s policy is a good heuristic for
this class of problems. In the case of two vendors, the gen-
eralized Homer’s policy is at most 134.31% of the opti-
mal. This result applies for all replenishment intervals, even
if they are not relatively prime. For the general case, as
long as the replenishment intervals are relatively prime, the
generalized Homer’s policy still performs relatively well,
with a worst-case result of at most 140% of the optimal.
The attained performance is somewhat surprising, because
the generalized Homer’s policy makes no attempt to syn-
chronize the deliveries from vendors with different replen-
ishment intervals. When the intervals are nested, proper
coordination between clusters of vendors is crucial in
improving worst-case results. This is indeed the approach
taken by Teo et al. (1998), who obtained a complicated
15/8 approximation algorithm for this case.

The problem considered in this paper is realistic but very
difficult. Furthermore, our analysis shows (via a transfor-
mation to the inventory staggering problem) that the choice
of the replenishment intervals, in stable and periodic deliv-
ery environment, can have profound impact on the average
inventory level. A small change in the replenishment inter-
vals can lead to significant change in the average inventory
level attained. This is not clear a priori for the delivery

scheduling problem but is evident from the fact that the
inventory staggering model is sensitive to the choice of the
replenishment intervals. We note also that finding a good
tractable approximation to the peak storage usage, for given
replenishment intervals, is a common issue in the study of
inventory system with storage consideration (e.g., SRMIS).
Through the analysis presented in this paper, we hope to
excite the larger research community in obtaining a more
robust solution to this problem.

Note that our results obtained so far assume that the
broad contract parameters have already been negotiated and
the focus is on fine-tuning the delivery schedules for opti-
mal inventory performance. A challenging problem is to
optimize the choice of the load of delivery �i, the number
of trucks ni used, and/or also the replenishment intervals
Ti, so that average inventory in the factory can be further
reduced. As another example, suppose the number of trucks
ni available is fixed. It is already difficult to determine the
load �i to be allocated to each vendor. It is not clear that
allocating the entire load to the vendor with the shortest
replenishment interval (i.e., single sourcing) will be the best
solution for this case, because the inclusion of other ven-
dors might allow the system to deploy more trucks that will
help bring down the inventory level in the system. We leave
the investigations of these problems for future research.
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