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Abstract In fixed-odds numbers games, the prizes and the odds of winning are known at

the time of placement of the wager. Both players and operators are subject to the vagaries

of luck in such games. Most game operators limit their liability exposure by imposing a

sales limit on the bets received for each bet type, at the risk of losing the rejected bets to the

underground operators. This raises a question—how should the game operator set the

appropriate sales limit? We argue that the choice of the sales limit is intimately related to

the ways players select numbers to bet on in the games. There are ample empirical

evidences suggesting that players do not choose all numbers with equal probability, but

have a tendency to bet on (small) numbers that are closely related to events around them

(e.g., birth dates, addresses, etc.). To the best of our knowledge, this is the first paper to

quantify this phenomenon and examine its relation to the classical Benford’s law. We use

this connection to develop a choice model, and propose a method to set the appropriate

sales limit in these games.
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Introduction

Gambling is probably one of the oldest inventions in human history. In the ancient past, it

was often organized around a fight between tribesmen. This ancient game of skill has

proliferated into the different sports betting games that are now commonly played in many

countries. Gambling can also take the form of a game of chance where the winners are

determined via an external event—a toss of bones, whoever draws the short straw, and so

on. In fact, such games are now routinely played at a national or state level, where players

bet on which prize-winning numbers will be drawn using mechanical devices (cf. Lafaille

and Simonis 2005).

In many countries, number lotteries have become a popular source of revenue for

governments. In 2005, the Hong Kong Jockey Club paid close to HK$12.4 billion to the

SAR government in betting duties and profits tax. This is close to 8.6% of the total tax

collected by the Inland Revenue Department of Hong Kong that year. In the same year, the

Singapore government took in S$1.05 billion from the gaming operators in betting duties,

against a total tax revenue of close to S$17 billion. These games are also popular in the

West. A recent survey by the licensed operator of the UK National Lottery, Camelot, found

that as many as 69% of the adult population in Britain played the lottery in 2005–2006.1

On the other hand, while there is no national lottery in the US, similar games are now

played in more than 30 states in the country.

There are many ways in which number lottery games can be organized. In a parimutuel

game, the players bet on the outcome of the draw of (random) prize-winning numbers, with

the winner drawing a fixed portion of the total amount of bets received. The payout for the

winners in such games depends on the total amount of bets received and the total number

of winners. On the other hand, in a fixed-odds game, the winner receives a fixed payout for

each winning wager, and the total payout for the winner is proportional to the amount of

the wagers he makes in the game. For a fixed-odds game, the prize is fixed for each ticket,

and hence the return for each player does not depend on how other players bet. However,

the game operator now bears the risk of paying out a large sum in prizes if a very popular

number is chosen as the winning number. Most game operators handle the risk exposure

issue in their fixed-odds numbers games by imposing a liability limit on the sales of each

number-all future bets on those numbers with accumulated sales hitting the limit will be

rejected. This raises an associated question-how should a game operator set the liability

limit? Note that this issue is particularly important to legalized game operator as a large

chunk of their sales will have to be returned to the government as tax revenues at the end of

each year. This prevents the operator from building up a large reserve to absorb the

exposure risk.

Teo and Leong (2002) used the Markowitz model to argue that it is reasonable to use a

common sales limit for all numbers/bet-types in the game. They exploited the design of a

popular four-digit numbers game played in Singapore to demonstrate the benefits of risk

pooling in the liability limits management system. However, they focused mainly on

internal risk control mechanism and did not study the impact of external demand distri-

bution (i.e., how players select numbers) on the game. Interestingly, this turns out to have a

huge impact on the effectiveness of the risk control mechanism.

1 The BBC news article on this can be accessed at http://news.bbc.co.uk/1/hi/uk/6174648.stm.
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Small Number Phenomenon

There are numerous studies in the gaming literature on lottery numbers selection among

the players. One group of studies (e.g., Simon 1999; Henze 1997; Haigh 1997, and Ziemba

et al. 1986) focuses on the lotto games (where players compete to pick, for instance, six

winning numbers out of 45), and has revealed many interesting behavioral patterns

showing how the players select their numbers. The most striking conclusion from these

studies is that the players do not select their numbers randomly; that is, not all numbers are

chosen with equal likelihood, and there is a tendency to select ‘‘auspicious’’ numbers (for

instance, the number 7 is routinely chosen by players in the game in the UK; numbers

below 31 are more popular than numbers above 31, etc.). Table 1 shows the proportion of

bets received on each number from 1–45 (ranked from highest to lowest proportions), in a

1996 powerball game played in the UK (Tijms 2007).

Another group of studies (Chernoff 1999; Halpern and Devereaux 1989) focuses on the

numbers game (where the players compete to pick the winning 3-digit or 4-digit number),

which is also known as Pick-3 or Pick-4 in many states in the US. Halpern and Devereaux

(1989) also observed that players in Pennsylvania favor small numbers in the 3-digit

numbers game, where the winning number is drawn randomly from among the numbers

000–999. They observed that the bet volumes decrease rapidly from numbers in the 100s to

400s, then slowly to the 900s. A similar phenomenon was also observed by Chernoff

(1999) in his study of the 4-digit game in Massachusetts.

The sales data received on a particular draw in Pennsylvania was clearly presented in

Halpern and Devereaux (1989), which allows us to quantify this phenomenon in the

numbers games. Figure 1 shows the empirical distribution of the sum-of-three-digits sta-

tistic of the numbers chosen by the players in the Pennsylvania game. We compare the

empirical distribution against the base case where all the 3-digit numbers are selected with

equal probability (i.e., the uniform-choice model). Interestingly, the empirical distribution

indicates a leftward shift from the base-case distribution, indicating a general preference

for smaller digits in the number selections.

This empirical evidence indeed suggests that players favor small numbers. We call this

the small-number phenomenon in the numbers game.

Explanations

Studies investigating cognitions of lottery ticket purchasers showed that people failed to

recognize that each number on a ticket is independent of the others. For example,

Ladouceur et al. (1996) showed that adults were more likely to select the ‘‘most random’’

perceived combinations, although in reality each ticket was as likely to win as the others.

In addition, Langer (1975) asserted that factors in a chance situation which are typically

associated with skill situations (such as choice, competition, and passive or active

involvement) cause an individual to believe they have control over a situation that is

completely governed by chance. Ladouceur et al. (1996) found that individuals who

selected their own lottery ticket requested a larger sum of money in order to relinquish or

sell back their ticket than those individuals who were randomly given a ticket (machine

generated numbers). They concluded that participants who were able to select their own

lottery ticket perceived their ticket as having a greater chance of winning and, as a result,

assigned a higher monetary value to the ticket than individuals in the no-choice condition.

Erroneous beliefs commonly held by adult gamblers were also identified in Hardoon et al.

(1997) and Ladouceur and Walker (1996). Herman et al. (1998) studied the question as to
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Table 1 Popularity of the 45
numbers in a 6/45 powerball
game

Rank Number Proportion

1 7 0.036

2 9 0.033

3 5 0.033

4 3 0.033

5 11 0.031

6 12 0.030

7 8 0.030

8 4 0.029

9 10 0.029

10 2 0.029

11 6 0.028

12 23 0.027

13 13 0.026

14 22 0.026

15 1 0.026

16 25 0.026

17 15 0.025

18 21 0.025

19 17 0.024

20 16 0.024

21 26 0.024

22 14 0.024

23 24 0.024

24 27 0.023

25 19 0.023

26 30 0.023

27 18 0.022

28 31 0.02

29 28 0.02

30 29 0.02

31 20 0.019

32 33 0.018

33 35 0.016

34 32 0.015

35 40 0.015

36 34 0.014

37 42 0.014

38 36 0.013

39 41 0.013

40 44 0.012

41 39 0.012

42 45 0.012

43 43 0.012
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when children’s gambling behavior resembles that of adults. They showed that as children

get older they are more specific in their beliefs that certain types of tickets are more likely

to win than others.

There are a few explanations for the small-number phenomenon in lottery games. As

stated in many studies (e.g., Halpern and Devereaux 1989; Simon 1999, etc.), a large

proportion of players tend to select numbers associated with special dates (e.g., birthdays,

anniversaries, etc.), meaningful numbers (e.g., phone numbers, car numbers, address

numbers, etc.), and special events (e.g., accidents and murders), and these numbers tend to

start with smaller digits (e.g., there are only 12 months in a year, so that the numbers 1–12

should be more popular than the numbers 13–45 in many 6/45 lotto games). Another

explanation put forth by researchers is the observation that human beings simply can not

choose numbers in a uniform manner. Loetscher and Brugger (2007) demonstrated using

experimental methods that there is indeed a cognitive bias towards the selection of small

numbers by human beings, even when they are told to select numbers ‘‘randomly.’’ In one

of their studies, a total of 488 subjects were told to ‘‘name a sequence of digits with each

digit chosen from 1 to 6 as randomly as possible,’’ and they found a surplus of small digits

(1, 2, or 3) in all their experiments.

These studies, unfortunately, offer only anecdotal evidence (through surveys and

interviews) and rudimentary explanations for the existence of the small-number phe-

nomenon, and do not provide an analytical framework to quantify and model this

phenomenon.

Another factor influencing the choice of numbers is superstitious beliefs, widely held by

players of lottery games. In Chinese culture, certain numbers are believed by some to be

lucky (or unlucky) based on the similarity of their pronunciation to that of certain Chinese

words. For instance, Chinese people usually associate the digit 8 with prosperity, and thus

Table 1 continued
Rank Number Proportion

44 38 0.011

45 37 0.01
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Fig. 1 Distribution of the sum-
of-three-digits statistic in the
3-digit numbers game
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numbers containing the digit 8 are normally more popular.2 On the other hand, the number

4 is considered unlucky in many cultures in Asia, since it sounds like the word for ‘‘death’’

in spoken Chinese. Such beliefs concerning lucky and unlucky numbers tend to affect the

popularity of certain numbers in the lottery game, leading to uneven distribution of the

wagers on the different numbers.

Modeling Empirical Data

There have been several attempts to model the biases in the choice model of players.

Simon (1999) considered the impact of the ‘‘lucky-number’’ biases and developed a model

to approximate the distribution of the number of times that a combination would be chosen

in the UK national lottery game. This provided a more accurate choice model for the UK

lottery game, and fitted the data better than the uniform-choice model. Stern and Cover

(1989) obtained the choice probability for each number in a lotto game, from the empirical

marginal frequencies, by solving a related entropy-minimization problem. Ziemba et al.

(1986) used regression methods and empirical data to estimate the popularity of each

number combination in the lotto game. Haigh (1997) used choice probabilities directly on a

set of numbers to estimate the popularity of the number combinations. Unfortunately, all

these methods took the empirical data as given and focused merely on finding a better

choice model to fit the empirical data. Thus, these methods did not exploit the existence of

the small-number phenomenon in their modeling approaches, nor did they try to quantify

this phenomenon.

Contributions

In this paper, we investigate the small-number phenomenon in the numbers games (rather

than the lotto games) and use it to address the liability limits management problem. Our

contributions in this paper are as follows:

• We quantify the small-number phenomenon through a curious fact observed by

Newcomb (1881) and independently by Benford (1938). Interestingly, while the

classical Benford’s law captures the proportion of bets on the first significant digit

reasonably well, it fails to account for the self-replicating nature of the empirical data

beyond the first significant digit. By carefully modeling the ways players compose the

digits in the numbers game, we refine Benford’s law to develop an alternate consumer-

choice model for different bet types using a handful of parameters only. Surprisingly,

this parsimonious choice model is already able to capture some of the most important

characteristics of the data in the numbers game.

• We examine the consequences of the small-number phenomenon on the prize liability

performance of the game operator. In particular, our analysis suggests that it will be

fruitful for the operators to pursue strategies to reduce the effect of the small-number

phenomenon; that is, to promote or encourage players to choose numbers randomly. On

the other hand, we show that the debate on whether a sales limit should be imposed on

the game can be examined from the demand side—if numbers are selected in a uniform

manner, then it may be futile to impose any sales limit since the performance is very

sensitive to the total sales revenues of the game; that is, with a slight change in total

2 In fact, China Mobile’s Jiangxi branch held an auction to sell a ‘‘lucky’’ phone number recently, and one
such number-with six consecutive eights—was sold for RMB 44,000!
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sales revenues, the operator may swing from a situation with all numbers hitting the

sales limit to a situation where all bets are accepted. Unless the total sales revenue can

be accurately forecasted, it will be difficult to set the right sales limit in this

environment. The small-number phenomenon in the choice process actually helps to

stabilize this relationship between the total sales revenues and the proportion of

numbers sold out. The imposition of a sales limit is thus more effective in such

environment.

Modeling the Small-Number Phenomenon

Classical economic theory assumes that players behave like rational agents, and make

decisions based on utility-maximization reasoning. As the returns from each number

combination are identical, these players have no specific preference for any particular

number and thus all numbers are selected with equal probability. We call these ‘‘Type 1’’

players.

However, recent empirical studies show that agents are not always seeking utility

maximization in their decision making since framing, loss aversion, decision biases etc.

can have major effects on players’ decisions. To understand the small-number phenome-

non, we need to augment the classical approach by incorporating the behavior of agents

who pick their ‘‘lucky’’ numbers (arising from events in their daily life, or through

superstitious beliefs) using reasoning which cannot be captured by any economic model.

These players are superstitious, and have a general tendency to avoid betting on certain

digits.3 We call these the ‘‘Type 2’’ players.

We also assume that each player bets $1 on each number chosen.

Definition 1 Let bB and bN denote the proportions of type 2 and type 1 players

respectively, with

bB þ bN ¼ 1: ð1Þ

The challenge in our problem is to estimate the proportions of type 1 and type 2 agents in

the population of players based on the aggregate sales data. To this end, we need to have a

better understanding on how type 2 agents choose their numbers. As these ‘‘lucky’’

numbers are normally selected from data series arising in the daily life of these type 2

agents, we will exploit a curious property associated with these natural numbers.

Benford’s Law

Newcomb (1881) observed that the first few pages of books of logarithms were more worn

than the last few and inferred that there might be more numbers starting with 1 or 2 than

starting with larger numbers. Newcomb then drew a counter-intuitive conclusion that the

first significant digits (i.e., first non-zero digits) of many data series in nature are not evenly

distributed as expected, but follow a logarithmic law. Almost 50 years later, independently

of Newcomb, Benford (1938) noticed the same phenomenon for categories of naturally

occurring numerical data; for example, areas of rivers, atomic weights, numbers from

Reader’s Digest, and so on. He then came to the same conclusion, now known as Benford’s

3 Interestingly, our data suggests that players in Pennsylvania have an aversion to the digit 2, but favor
digits 7 and 8.
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law, which Newcomb had arrived at so many years previously. Both Newcomb (1881) and

Benford (1938) proposed that the probability that a number has the first significant digit D1

in a set [1…9], is given by

PðD1 ¼ d1Þ ¼ log10 1þ 1

d1

� �
; for all d1 2 ½1. . .9�: ð2Þ

Let Di denote the ith significant digit of a number. Hill (1995a) extended the above

observation to a general version of Benford’s law: for all d1 2 ½1. . .9�; and dk 2 ½0. . .9� for

k [ 1,

PðD1. . .Di ¼ d1. . .diÞ ¼ log10 1þ 1Pi
j¼1 dj � 10i�j

 !
: ð3Þ

Empirical evidence of Benford’s law has appeared in a wide range of data; for example,

stock index (Ley 1996), income tax (Nigrini 1996), mathematical series (Whitney 1972),

and so on. Benford (1938) analyzed the underlying causes of this logarithmic phenomenon

using a heuristic argument. Other mathematicians and statisticians have offered various

explanations for this phenomenon. Raimi (1976) gave a review of some of the more

intuitive explanations. It wasn’t until 1995 that Hill (1995a) provided a formal rigorous

proof that Benford’s law is the only probability distribution which is scale-invariant and

base-invariant. Using modern mathematical probability theory, and the scale- and base-

invariant proofs, Hill rigorously demonstrated that the ‘‘distribution of distributions’’ given

by random samples taken from a wide variety of different distributions in fact satisfies

Benford’s law (cf. Hill 1998).

One of the main applications of Benford’s law is in fraud detection, under the

hypothesis that fabricating data which conform to Benford’s law is difficult. Recent

empirical evidence shows that true accounting data sets conform very closely to Benford’s

law (Thomas 1989; Nigrini 1996). On the other hand, fabricated data rarely conform to

Benford’s law. Therefore, digital analysis based on Benford’s law has been proposed as a

new tool for fraud detection in recent years. Another application of Benford’s law has been

in the design of computers. Schatte (1988) devised rules that optimize computer data

storage, by allocating disk space according to the proportions dictated by Benford’s law,

based on the assumption that input request satisfy Benford’s law. Furthermore, both Varian

(1972) and Hill (1995b) suggested using Benford’s law as a test of the reasonableness of

forecasts of a proposed model. If real life data follows Benford’s law, it seems reasonable

to assume that a good mathematical model should also do so.

In this paper, we add to this growing list of applications by showing that Benford’s law

can be used to capture the number selection behavior of type 2 agents in our model.

Choice Model for Type 2 Agents

WLOG, we will develop the choice model based on a 3D game, using the sales data

published earlier in Halpern and Devereaux (1989). We have cross validated this model on

other empirical data in several other number games, but unfortunately, due to the sensi-

tivity of the data, we could not report the results here. For ease of exposition, we ignore the

bets received for the number 000 from subsequent analysis; that is, we assume that none of

the players will place a bet on the number 000. Using this assumption, the betting profiles

of the type 1 players are drawn from a uniform distribution where all the numbers from 001
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to 999 will have an equal chance of being selected. We focus next on the betting behavior

of the type 2 players.

To ensure that the number selected has exactly 3 digits, we assume that the type 2 player

may choose to compose a 3-digit number by padding the number he or she has chosen with

leading zeros.4

Definition 2 Let ci denote the proportion of type 2 players who are betting on numbers

with i significant digits.

By definition,

X3

i¼1

ci ¼ 1: ð4Þ

We first state a very simple consumer-choice model, where the classical Benford’s law

holds directly for the 3-digit numbers played.

Assumption 1 We assume that the type 2 player will choose to play the 3-digit number

d1…di (d1 [ 0), with 3-i leading zeros, with probability

ci log10 1þ 1

d1 � 10i�1 þ � � � þ di

� �
: ð5Þ

Note that this is none other than the classical Benford’s law, except that we weigh it with a

factor ci to account for the proportion of players who bet with i significant digits.

It is now easy to prove the following proposition.

Proposition 1 Under Assumption 1, the expected proportion of the betting volume on a

3-digit number with first significant digit i, denoted by E[S(i)], is

E½SðiÞ� ¼ bB � log10 1þ 1

i

� �
þ bN �

1

9
; for all i ¼ 1; 2; . . .9: ð6Þ

Note that E[S(i)] does not depend on cj. We can thus use this property to calibrate the value

of bB and bN, by looking at the proportion of bets received for each significant digit. In the

3D data from Pennsylvania, the proportion of the type 2 and type 1 players are estimated to

be 39.58% (bB = 0.3958) and 60.42% (bN = 0.6042), according to the least square model.

We plot next the expected proportion of the first significant digit, given by the optimal

parameter values, as shown in Fig. 2, along with the empirical proportion. The prediction

from Benford’s law captures the general trend in the empirical data, although we observe a

general preference for first significant digit 3, 7 and 8 among the players, whereas the digit

2 has lower frequency than expected. Although we can refine our model to build in these

biases into the model, we opted not to do so because such preferences do not appear to be

universal across cultures.

While the simple model in Assumption 1 captures the behavior concerning the first

significant digit rather accurately, we examine its ability to track the proportion of betting

4 Note that this simplifying assumption may not hold in general, as some players may pad the numbers with
trailing zeros, and some may simply duplicate the numbers to reach a 3-digit number. Halpern and
Devereaux (1989) mentioned that triplets like 111 or 888 are very popular in the Pick-3 game in Penn-
sylvania. Unfortunately, it does not appear possible to incorporate such features into the model, without
sacrificing the simplicity and tractability of the calibration model.
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volume for the first two significant digits. We plot next the expected proportion of bets

received and the empirical averages in Fig 3. Interestingly, our model is able to capture the

declining popularity in the 3-digit numbers, as the first two significant digits grow from 10

to 99. This provides a partial explanation for the small-number phenomenon often

observed in the games. Unfortunately, it could not explain the fact that the small-number

phenomenon exists even in each decile (sub-block), as shown in Fig 3.

To understand the choice preferences beyond the first significant digit, we need to

model an important characteristic in the way players compose the 3-digit numbers in the

game. One such common strategy is to combine data from two different series to form a

3-digit number. For example, the number 246 could come from the 24th day of the month

of June, or it could come from the address being level 6 of block unit number 24. The

previous model assumes that the 3-digit numbers come from a single data series and hence

fails to capture this switching behavior.

We notice that the probability distribution in our first assumption can be written in a

different form:
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model
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ci log10 1þ 1
d1�10i�1þ���þdi

� �
¼ ci log10 1þ 1

d1

� �log10 1þ 1
d1�10þd2

� �

log10 1þ 1
d1

� � � � �
log10 1þ 1

d1�10i�1þ���þdi

� �

log10 1þ 1

d1�10i�2þ���þdi�1

� �:

Here, ci represents the probability that the type 2 player will pick a number with i sig-

nificant digits. log10ð1þ 1
d1�10i�1þ���þdi

Þ= log10ð1þ 1
d1�10i�2þ���þdi�1

Þ represents the probability

that the ith digit is di, given that the first i-1 digits are d1…di-1. To model the switching

behavior, we refine the recursive approach in the following way:

• As before, log10 1þ 1
d1

� �
represents the probability that the first digit is d1.

• Let

log10 1þ 1
d1�10i�1þ���þdi

� �

log10 1þ 1
d1�10i�2þ���þdi�1

� �
þ k

denote the probability that the player will continue to generate the ith digit di as if it comes

from the same data series as the first i-1 digits, with parameter k[ 0. Note that in this

way, the players will switch to a different data series with a non-negative probability

k

log10ð1þ 1
d1�10i�2þ���þdi�1

Þ þ k
:

• If the players switch to a different data series, let p0 denote the probability that they will

switch to the digit ‘‘0.’’ Otherwise, they will switch to digit i, with i 2 f1; . . .; 9g; with

probability ð1� p0Þ log10ð1þ 1
iÞ:

With a slight abuse of notation, we can write

log10 1þ 1

0

� �
:¼ p0

1� p0

; and k :¼ q

1� q
:

We can now model the switching behavior in the 3-digit game in the following way:

Assumption 2 We assume that the type 2 player will choose to play the 3-digit number

d1…di (d1 [ 0), with 3-i leading zeros, with probability

ci log10 1þ 1
d1

� �ð1�qÞ log10 1þ 1
d1�10þd2

� �
þqð1�p0Þ log10 1þ 1

d2

� �

ð1�qÞ log10 1þ 1
d1

� �
þq

� � � �

�
ð1�qÞ log10 1þ 1

d1�10i�1þ���þdi

� �
þqð1�p0Þ log10 1þ 1

di

� �

ð1�qÞ log10 1þ 1

d1�10i�2þ���þdi�1

� �
þq

:

In this way, we can interpret the parameters as follows.

Definition 3 Let q denote the switching probability. Let p0 denote the probability that the

digit will be switched to 0.

Let E[S(i,j)] denote the expected proportion of bets with first two significant digits i and

j respectively.
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Proposition 2 Under Assumption (2),

E½SðiÞ�¼bB� log10 1þ1

i

� �
þbN�

1

9
; for all i¼1;2; . . .9;

E½ðSði;jÞ�¼bB log10 1þ1

i

� � ð1�qÞ log10ð1þ 1
i�10þjÞþqð1�p0Þlog10ð1þ 1

jÞ
ð1�qÞlog10 1þ 1

i

� �
þq

 !
þbN

1

90

� �
:

Note that the expected proportion of first significant digits remains unchanged under both

assumptions. The parameters under Assumption 2 are calibrated to be q = 0.9105,

p0 = 0.1054, to best fit the empirical data under the least square model.

We compare the expected frequencies of first two significant digits with those in

empirical data respectively in Fig. 4. The frequencies generated from this model closely fit

the frequencies of the empirical data. More interestingly, this model is able to capture the

small-number phenomenon in the second significant digit of the data series.

Note that so far the parameters cj did not feature in the analysis. This arises because we

have fixed the number of significant digits. To complete our specification of the choice

model, we need to estimate the values of these parameters. Let ĉj denote the sample

average of the proportion of bets with exactly 3-j leading zeros. We use ĉj to obtain an

unbiased estimator of cj, using the following relationship:

b̂Bcj þ b̂N

9� 10j�1

999
¼ ĉj; for j� 1: ð7Þ

Model Validation

We show next that the choice model under Assumption 2 proposed in the earlier section

has the ability to track some of the most important characteristics of the betting data in the

3D game.

We first estimate the behavior for the sum-of-digits statistic, using data simulated

according to Assumption 2 (with the calibrated parameters). We compare it with the

empirical data (after removing the betting volumes on the 3-digit number 000). Figure 5
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depicts the distributions of the sum-of-digits in three data series: the actual data, simulated

data from our choice model, and the uniform-choice model.

The estimation of 39.58% type 2 and 60.42% type 1 players in the population seems

right, as it captures the magnitude of the leftward shift in the empirical data reasonably

well. Also, note that our choice model does not account for the superstitious beliefs

observed in the empirical data (players generally avoid 2 and prefer 7 and 8). This partially

explains why the proportions from our model are higher for smaller sum-of-digits (from 3

to 7) and lower for sum-of-digits around 15.

We track the performance of another statistic—the numbers of 3-digit bets attaining a

certain betting volume. Figure 6 shows the number of 3-digit numbers in the game with a

given betting volume (specified in the horizontal axis). The distribution obtained from the

uniform-choice model follows a binomial distribution, and centers mainly around the

mean. This yields a poor fit for the empirical data. The distribution obtained from our

choice model clearly has a better fit.
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Applications

The small-number phenomenon clearly has important implications for the operational risk

management of the game. The numbers picked by the type 2 players introduce variability and

skewness to the distribution of bets on the 3-digit numbers. The winning numbers, on the other

hand, are randomly (i.e., uniformly) rolled out by a mechanical device, which implies that the

hot numbers are chosen with the same probability as other numbers. The mismatch between

the winning number distribution and the betting volume distribution leads to a significant

operational risk: the operators may face a substantial payout if a popular number happens to

be picked as the winning number! This is a phenomenon which often worried the game

operators. In Quebec, according to Lafaille and Simonis (2005), ‘‘the first drawing caused a

prize liability well in excess of the amount received in sales.’’ Fortunately, ‘‘over the long run

it all evened out and the projected prize percentage was achieved.’’

We show in this section that the small-number phenomenon plays a significant role in the

large volatility of prize liability experienced by many operators in the game. We further

exploit this observation to propose a method to help determine the sales limit in these games.

Volatility of Prize Liability

We examine the impact on the prize payout volatility by the proportion of type 2 players in

the population of players. We compare the variability of payout in the 3D game, as we

increase the proportion of type 2 players from 0 to 39.58% in the choice model (both with

Assumption 1 and Assumption 2). For this study, we assume that the sales limit is higher

than demands, so that all bets are accepted.

Consider a game with a prize P and N players, each betting $1 on a number drawn from

a respective distribution. Let XbB
ðnÞ denote the amount of bets received on the number n

when the proportion of type 2 players is equal to bB. When the winning number for that

prize is drawn uniformly among the 999 numbers (from 001 to 999, as we have ruled out

the bets on the number 000), the expected payout in our choice model is simply

P

999

X999

n¼1

EðXbB
ðnÞÞ ¼ P

999
� N:

The second moment of the payout is

P2

P999
n¼1 EðX2

bB
ðnÞÞ

999

 !
:

Hence, the variance of payout is

P2

P999
n¼1 EðX2

bB
ðnÞÞ

999
� N2

9992

 !
:

If all the N players choose their numbers independently, XbB
ðnÞ � BiðN; pbB

ðnÞÞ, where

pbB
ðnÞ denote the probability that number n is picked in our choice model, given that the

proportion of type 2 players is bB. Hence,

EðXbB
ðnÞ2Þ ¼ N2p2

bB
ðnÞ þ NpbB

ðnÞð1� pbB
ðnÞÞ:
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We can thus analytically compare the variance of the payout, under different values of

bB. As shown in Fig. 7, under both assumptions, the variability of payout is increasing as

the proportion of type 2 players increases. When bB is equal to 0, that is, the demand is

evenly distributed, the variance of payout is only 0.003 9 1012. When bB increases to

39.58%, the variance of payout under Assumption 1 is 3.6794 9 1012, about 1216 times

higher than that of the uniform-choice model. Since Assumption 2 captures more of the

volatility of the data, the variance of payout is 13.049 9 1012 in this model, 4313 times

bigger than that of the uniform-choice model.

Note that our choice model only includes 39.58% type 2 players and does not account

for other random effects such as date or month effect. So, the volatility of actual prize

payout should be even worse. For the 3D game in Pennsylvania, we conclude that the

standard deviation of the prize payout can be reduced by 65 times if the proportion of the

type 2 agents (bB) reduces to 0.

Liability Limit

In the rest of this section, we use the small-number phenomenon to set the appropriate

liability limit for the 3D game. Let Dn denote the (random) demand of a 3-digit number n.

The distribution of Dn depends on the proportion of type 1 and type 2 players in the game.

Let C denote the corresponding sales limit. Let Sn denote the accepted sales for number n;

i.e.,

Sn ¼ minðDn;CÞ:
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Fig. 7 Variance of payout as the proportion of type 2 players increases
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Note that

E½Sn� ¼ C � PðDn [ CÞ þ EðDnjDn�CÞ � PðDn�CÞ:
Let R(S1,…, SN) denote the ‘‘risk exposure’’ when sales for the N numbers are given by

(S1,…, SN). There are several ways to model the risk measure R(�), and it generally depends

on the distribution of the winning numbers drawn.

Suppose the expected return given $1 bet is r. We use the mean-risk trade-off to model

the utility function of the game operator. The expected utility function of the game operator

is thus given by

r
XN

n¼1

E½Sn� � kE RðS1; . . .; SNÞf g;

where k is an exogenous penalty term for risk exposure.

We can find C by solving the following maximizing problem:

max
C[0

r
XN

n¼1

½C �PðDn [CÞþEðDnjDn�CÞ �PðDn�CÞ��kE RðminðD1;CÞ; . . .;minðDN ;CÞÞf g:

It can be easily shown that the objective function is convex. Thus, according to the first

order condition, the optimal liability limit C satisfies:

XN

n¼1

PðDn [ CÞ ¼ k
r
E

oRðminðD1;CÞ; . . .;minðDN ;CÞÞ
oC

� �
: ð8Þ

Note that the left hand side corresponds to the expected number of hot numbers, i.e., the

expected number of bet types reaching the sales limit in the draw. The sales limit can be set

by merely choosing a sales limit C to control the number of hot numbers.

Suppose the total bets collected are to the value of $N, and the cut-off limit is $C for

each number. We next estimate the expected number of hot numbers (i.e., the numbers

with betting volumes hitting the liability limit).

We define an indicator function YbB
ðnÞ as follows:

YbB
ðnÞ ¼ 1 if XbB

ðnÞ�C;
0 otherwise:

	

The expected number of hot numbers with liability limit $C is

E
X999

n¼1

YbB
ðnÞ

 !
¼
X999

n¼1

P XbB
ðnÞ�C

� �
¼
X999

n¼1

1�
XC�1

i¼0

N

i

� �
ðpbB
ðnÞÞið1� pbB

ðnÞÞN�i

 !

Note we can use a normal distribution NðNpbB
ðnÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NpbB
ðnÞð1� pbB

ðnÞÞ
p

Þ to approximate

the binomial distribution BiðN; pbB
ðnÞÞ, if N is large enough. Hence, we have

E
X999

n¼1

YbB
ðnÞ

 !
¼
X999

n¼1

1� U
C � NpbB

ðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NpbB
ðnÞð1� pbB

ðnÞÞ
p
 ! !

:
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We can thus analytically compute the expected number of hot numbers given a liability

limit $C, and compare the results using different liability limits. Figure 8 shows the

expected number of hot numbers under different liability limits in the case that 39.58%

players are type 2 and 60.42% players are type 1, and in the ideal case that all players are

type 1 agents.

In the ideal case, because all numbers are selected with equal probability, the con-

centration of measure phenomenon kicks in and the expected number of hot numbers goes

through a phase transition—dropping sharply from 999 (all sold out) to 0 (none sold out)

for a narrow range of sales limit. This is most evident from Fig. 8: when the total sales is

$9M, $10M, $11M, and $12M, respectively, the expected number of hot numbers drops

sharply to zero when the liability limit is around $10000, $11000, $12000, and $13000,

respectively. In this environment, trying to find the appropriate sales limit to control the

right level of hot numbers is almost impossible because this number depends critically on

the total sales level, a number which normally fluctuates from draw to draw.

In the empirical sales data, we have bB& 0.3958. In this environment, interestingly, the

phase transition phenomenon disappears, and the relationship between the sales limit and

the expected number of hot numbers is more stable. For a sales limit of $10000, the hot

numbers fluctuate from 200 to 400 when the total sales level changes from $9M to $12M.

The relationship between the total sales and proportion of hot numbers are thus more

stable.
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Conclusion

In this paper, we have analyzed an interesting phenomenon in a popular numbers game.

While it is by now folklore that players in these games prefer small numbers, this paper is

arguably the first to quantify this behavior using Benford’s law. The connection is forged

by virtue of the argument that many natural data series satisfy Benford’s law. We also take

into account the choice behavior of the players, in particular the way the players compose

the 3-digit number to obtain a refined choice model. Although we do not model additional

phenomenon such as superstitious beliefs and date-month effect on the choice behavior, the

simple model we built, using only a few parameters (i.e., the proportion of type 2 agents

bB, the probability of switching q, and the probability of padding the number with digit

zero p0), is already able to capture some of the most important characteristics of the

empirical data.

While we have presented only the analysis using a set of publicly available data from

the US, we have tested the model on an extensive series of data provided by a game

operator in another region. Despite the differences in culture and beliefs, we found that the

same underlying model can be used to describe the behaviour of the aggregate data, with

the main difference coming from the proportion of Benford-like players. We believe that

the small-number phenomenon is a generic behavior inherent in many numbers games.

The proportion of type 2 players (bN) has a tremendous impact on the variability of the

prize liability, and to a certain extent affects the appropriate choice of sales limit in the

numbers game. There are many ways to mitigate the small-number effect through demand

shaping. One approach, already in use, is to use on-site computer terminals to help players

to pick the numbers randomly. However, people often do not like random picks because

they like to assume some control over the outcomes (cf. Langer 1975). Therefore, there

may be limits on the extent to which the industry can encourage random picks. Another

approach is to re-design the game to encourage the players to bet on as many different

permutations as possible. In Singapore, the introduction of a new iBet system

(cf. http://www.singaporepools.com.sg) proves to be popular with the players. The new

system allows the players to spread a dollar bet on as many permutations of the number

combination as possible, with a corresponding reduction in the prize monies. It also helps

to mitigate the effect of the small number phenomenon. Other possible approaches include

posting the results of past winning numbers in the retail outlets to influence the selection of

numbers by the players. The past winning numbers are drawn in a random manner and thus

will not exhibit the same feature as numbers picked by Benford’s type player. Of course,

recency bias may actually deters players from betting on recent winning numbers, and

hence this approach may not be as effective in persuading players from moving away from

their preferred numbers.

Interestingly, if the game operators are able to reduce the proportion of benford players,

then the above analysis shows that the imposition of the sales limit may no longer be

needed, since it will be difficult and futile to implement such a mechanism anyway.
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