
OPERATIONS RESEARCH
Vol. 53, No. 1, January–February 2005, pp. 48–60
issn 0030-364X �eissn 1526-5463 �05 �5301 �0048

informs ®

doi 10.1287/opre.1040.0140
©2005 INFORMS

Stochastic Transportation-Inventory
Network Design Problem

Jia Shu, Chung-Piaw Teo
High Performance Computation for Engineered Systems, Singapore-MIT Alliance, and Department of Decision Sciences,

National University of Singapore, Singapore {tlisj@nus.edu.sg, bizteocp@nus.edu.sg}

Zuo-Jun Max Shen
Department of Industrial Engineering and Operations Research, University of California, Berkeley, California 94720,

shen@ieor.berkeley.edu

We study the stochastic transportation-inventory network design problem involving one supplier and multiple retailers. Each
retailer faces some uncertain demand, and safety stock must be maintained to achieve suitable service levels. However, risk-
pooling benefits may be achieved by allowing some retailers to serve as distribution centers for other retailers. The problem
is to determine which retailers should serve as distribution centers and how to allocate the other retailers to the distribution
centers. Shen et al. (2003) formulated this problem as a set-covering integer-programming model. The pricing problem that
arises from the column generation algorithm gives rise to a new class of the submodular function minimization problem.
In this paper, we show that by exploiting certain special structures, we can solve the general pricing problem in Shen et al.
efficiently. Our approach utilizes the fact that the set of all lines in a two-dimension plane has low VC-dimension. We
present computational results on several instances of sizes ranging from 40 to 500 retailers. Our solution technique can be
applied to a wide range of other concave cost-minimization problems.

Subject classifications : facilities/equipment planning: stochastic; inventory/production: uncertainty, stochastic;
programming: nonlinear.

Area of review : Transportation.
History : Received October 2001; revision received December 2002; accepted September 2003.

1. Introduction
Managing inventory has become a major challenge for
companies as they simultaneously try to reduce costs and
improve service levels in today’s increasingly competitive
market. Managing inventory consists of two critical tasks.
First, we must determine the optimum number and loca-
tion of distribution centers. Second, we must determine the
amount of inventory to maintain at each of the distribu-
tion centers. Often these tasks are undertaken separately,
resulting in a degree of suboptimization. Research in this
area deals with the modelling, design, planning, and control
of integrated supply chains as they occur in both indus-
trial and service organizations. Important aspects concern
the development of new control architectures, as well as
the development of decision-support systems for planning
and scheduling these systems. In addition, methods for the
performance analysis of alternative supply chain structures,
under stochastic demand, is an important research area. The
current research seeks to optimally exploit the possibilities
to achieve an ideal network that must have the optimum
number, size, and location of DCs to support the inventory
replenishment activities of its retailers.
We study the design of a stochastic distribution network

in which a single supplier ships products to a set of dis-
tribution centers (DCs). Each DC serves a pool of retailers
with uncertain customer demand. The number and locations

of DCs are not given a priori. They are chosen from the set
of retailers. After being chosen as a DC, this retailer-based
DC is served directly by the supplier and distributes prod-
ucts to other retailers assigned to it. The central issue in
the stochastic distribution network design problem is how
many and which retailers should be selected to be the DCs,
how to assign the other retailers to the DCs, and how to
manage the inventory at each DC.
The problem we presented above was motivated by a

study conducted by Shen et al. (2003) and Daskin et al.
(2002) at a Chicago-based blood bank. The blood bank sup-
plied roughly 30 hospitals in the greater Chicago area. Its
focus was on the production and distribution of platelets,
the most expensive and most perishable of all blood prod-
ucts. If a unit of platelets is not used within five days of the
time it is produced from whole blood, it must be destroyed.
The demand for platelets is highly variable, as they are
needed in only a limited number of medical contexts. When
they are used, however, multiple units are often needed. By
storing platelets at regional centers (located at a subset of
the hospitals) instead, and distributing platelets to nearby
hospitals on an as-needed or daily basis, three objectives
were likely to be achievable:
• Inventory cost can be reduced due to risk pooling.

The safety stocks needed to protect against shortages will
reduce with pooling of safety stocks;

48



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
Operations Research 53(1), pp. 48–60, © 2005 INFORMS 49

• The cost of emergency shipments can be reduced
because platelets would be stored closer to each of the
hospitals; and
• The training cost for inventory managers in an

improved supply chain distribution network system can be
reduced because the stock would be stored at a small num-
ber of regional distribution centers instead of being main-
tained at each individual hospital.
Shen et al. (2003) and Daskin et al. (2002) modelled the

above problem as a special case of a more general con-
cave cost network design problem, often encountered in
practice. For instance, consider the following case problem
from a widely used supply chain management textbook by
Chopra and Meindl (2001). ALKO Inc., a company that
developes, produces, and distributes lighting fixtures, made
over 100 products through its production line. These prod-
ucts were stored in five regional DCs operated by ALKO to
meet the market demand nationwide. It classified the prod-
ucts into three categories in terms of volume of sales, and
each one has a different demand mean and standard devia-
tion. The company wanted to determine whether it should
consolidate all or some of its products into a central DC
and close all or some of the regional DCs, instead of stock-
ing each item in every regional DC. The decision as to
whether to set up the central DC depends on:
• setup cost of a central DC if any;
• closure cost of regional DCs if any; and
• cycle inventory cost, safety stock cost, and transporta-

tion cost under the new distribution system.
The setup cost of a central DC is modelled as a concave

cost function of the throughput of the DC. It depends on
the products stored at the DC and the regions served. The
associated inventory cost and safety inventory cost compo-
nents can be well approximated by another concave func-
tion, depending on the DC-customer assignment decision
and the inventory replenishment policy used. This model,
interestingly, turns out to be an (multiproduct) extension of
the concave cost network design problem studied in this
paper.
The rest of this paper is organized as follows. Section 2

reviews some literature on location theory and inventory
models, and some earlier work on joint location-inventory
models. Section 3 describes two models for the network
design problem, namely the nonlinear integer programming
model and the set covering model. In §4, we present a
new method to solve the nonlinear pricing problem. In §5,
we use the “variable fixing” method to further enhance
the computational performance of the column generation
algorithm. Finally, computational results that highlight the
effectiveness of the proposed algorithm are reported in §6.
We conclude the paper with several ways to extend and
generalize the approach presented in §7.

2. Literature Review
The goal of traditional inventory research (see, for exam-
ple, Graves et al. 1993, Nahmias 1997, and Zipkin 1997

for a review) is to develop and evaluate inventory policies
so as to minimize the inventory-related costs while meeting
some service-level standards. Most of the papers in this
area assumed a given distribution structure, with given
DC location and known customers assignment to the
DC. In a different vein, the literature on facility location
and distribution network design (see, for example, Daskin
1995, Mirchandani and Francis 1990, Drezner 1995, and
Geoffrion and Power 1995 for a review) focuses mainly
on the trade-offs between the facility location and prod-
uct transportation costs, usually ignoring or simplifying
inventory-related costs.
Eppen (1979) showed that significant inventory-cost sav-

ings can be achieved at the network design stage by group-
ing retailers demand together and thus capitalizing on the
so-called “risk-pooling effects.” The location issue is there-
fore an important factor in the overall performance of dis-
tribution inventory system. Barahona and Jensen (1998)
studied a version of the distribution network design prob-
lem for computer spare parts. Their model takes into
account the costs of building the DCs and maintaining
inventories at the various locations. To make the model
tractable, they imposed very restrictive assumptions on the
inventory costs. Teo et al. (2001) studied the impact on
inventory costs with consolidation of distribution centers.
They design an algorithm that solves for a distribution sys-
tem with the total fixed facility location cost and inventory
costs within

√
2 of the optimum. Their approach, how-

ever, could not capture the impact of network design on
the transportation cost component. Erlebacher and Meller
(2000) formulated a joint location-inventory model with
highly nonlinear integer objective functions. Continuous
approximation and some other heuristics are used to solve
the problem. For a 600-node problem, it took 117 hours on
a Sun Ultra Sparcstation.
Finally, Shen (2000), Shen et al. (2003), and Daskin et al.

(2002) studied the risk-pooling network design problem
(presented in the next section). They were able to solve the
pricing problem efficiently in time O�n logn� for two spe-
cial cases: when the variance of the demand is proportional
to the mean (as in the Poisson demand case), or when the
demand is deterministic. Unfortunately, they are unable to
address the general pricing problem. Although they proved
that the general pricing problem is a submodular function
minimization problem that can be readily solved in polyno-
mial time (see, for example, Grotschel et al. 1981, Schrijver
2000, Iwata et al. 2001), preliminary computational evi-
dence shows that these algorithms are still not attractive
computationally, especially because we need to solve the
pricing problem in every iteration of the column generation
algorithm.
Fortunately, the specific properties of the general pricing

problem make possible the use of a considerably simpler
and faster algorithm. We propose a much faster algorithm
�O�n2 logn�� to generate columns for the general case,
using ideas from Chakravarty et al. (1985). We show that



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
50 Operations Research 53(1), pp. 48–60, © 2005 INFORMS

the pricing problem is related to a problem in compu-
tational geometry. In fact, using an advance incremental
algorithm for enumeration of vertices over a zonotope (see
Onn and Schulman 2001, where the pricing problem in this
paper can be shown to be a special case), the running time
complexity can be further slashed to O�n2�. However, the
reduction in running time comes at the expense of more
complicated data structure to implement the incremental
algorithm. The proposed algorithm, thus, is still not attrac-
tive in practice. Instead, we show that by combining the
variable fixing idea (cf., Daskin et al. 2002) with our algo-
rithm for the pricing problem, we are able to speed up
the running time by a factor of 10 and solve a realistic-
sized transportation-inventory network design problem (up
to 500 retailers) in just under 10 minutes.
We emphasize the importance of being able to address

the general pricing problem efficiently. The two cases con-
sidered in Shen et al. (2003) require that the demand be
either deterministic or �2i /�i = 	 for every retailer. This is
hardly the case in many real situations. Supply chain net-
work design problems under the more general conditions
are the ones that management is most concerned with, and
our model can be applied in the decision-making process
for problems of this kind.
While the development of an integrated location/

inventory model will be valuable in its own right, it is likely
to have significant impacts in other areas as well. In a recent
paper, Current et al. (2002) cite over a dozen applications
of location models in many different areas including chip
manufacturing, medical diagnosis, product procurement,
and lot-sizing problems. Some of these problems are struc-
turally similar to our integrated location/inventory model.
Thus, there are likely to be significant applications of this
work that extend well beyond integrated facility location
and inventory modelling and beyond supply chain network
design. One such example is Geunes et al. (2004), who
apply the algorithm in Shen et al. (2003) to an inven-
tory model in which a seller maximizes profit by deciding
whether or not to satisfy each potential market demand.
The decision depends on the revenue and cost parameters
of each individual market and the economies of scale in the
production/distribution costs.

3. Model Formulation
The generic risk-pooling network design problem is as fol-
lows: Given a set I of retailers, we would like to (i) deter-
mine the location of the DCs, and (ii) determine how the
DC can be used to serve the retailers. We use the following
notations:

Inputs and Parameters

• �i: mean (yearly) demand at retailer i for each i ∈ I .
• �2i : variance of (daily) demand at retailer i for each

i ∈ I .
• fj : fixed (annual) cost of locating a regional distribu-

tion center at retailer j for each j ∈ I .

We further assume that each retailer can only be served
using a single DC; i.e., we do not split the demand at the
retailer. When DC j is used to serve the retailers in set S,
the associated cost is given by four cost components:

Cost Components

• fj : the fixed location cost.• ∑
i∈S �ij�i: a term which is linear in �i.• Gj�
∑

i∈S �i�: a term which is concave and nondecreas-
ing in the expected throughput assigned.
• Hj�

∑
i∈S �2i �: a term which is concave and nondec-

reasing in the total demand variance experienced by
the DC.

For instance, when �ij corresponds to unit transportation
cost between DC j and retailer i, the second term captures
the total transportation cost associated with using DC j to
serve retailers in set S. Gj�

∑
i∈S �i� can be interpreted as

the DC operating and inventory replenishment cost. This is
normally assumed to be concave (as in the ALKO case or
as in the EOQ model approximation) to reflect the economy
of scales in inventory replenishment and handling. Last
but not least, Hj�

∑
i∈S �2i � can be interpreted as the safety

inventory cost component associated with the assignment.
Again, this function can be well approximated as a concave
function in the total variance in the demand assigned to
the DC, capturing the risk-pooling effect by consolidating
demand at a centralized location.
Let Xj = 1 if a DC is set up at location j , 0 otherwise,

and Yi� j = 1 if DC j is used to serve retailer i, 0 otherwise.
The problem can be formulated as

min
∑
j∈I

(
fjXj +

(∑
i∈I
��ij�i�Yij

)

+Gj

(∑
i∈I

�iYij

)
+Hj

(∑
i∈I

�2i Yij

))
(1)

subject to∑
j∈I

Yij = 1 for each i ∈ I� (2)

Yij −Xj � 0 for each i� j ∈ I� (3)

Yij ∈ �0�1� for each i� j ∈ I� (4)

Xj ∈ �0�1� for each j ∈ I � (5)

The first two terms are structurally identical to those of
the uncapacitated facility model. The last two terms are
related to inventory costs, which are nonlinear in the assign-
ment variables. The constraints of the model are identi-
cal to those of the uncapacitated facility location problem,
thus the problem we are studying is more difficult than the
standard uncapacitated facility location problem, which is
already a notorious NP-hard problem. Note that without
the risk-pooling term Hj�·�, the LP relaxation of the above
problem reduces to a classical concave cost transportation
network flow problem. The presence of the risk-pooling
term destroys the network flow structure and gives rise to
a nasty combinatorial optimization problem.



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
Operations Research 53(1), pp. 48–60, © 2005 INFORMS 51

3.1. Example of the Risk-Pooling Model

For ease of exposition and to make the paper self-
contained, we introduce the model proposed by Shen et al.
(2003) and Daskin et al. (2002) as a special case of the
above model. The readers may want to refer to the original
papers for detailed derivation of the model.
Two different types of inventories are kept at each DC:

the working inventory, which is determined by the inven-
tory ordering policy adopted, and the safety stock, which
is kept at each DC to protect against the possibilities of
running out of stocks during replenishment lead time. We
assume each DC orders inventory from the supplier using
an economic order quantity model (EOQ). Other cost terms
include the transportation costs from each DC to the retail-
ers it serves and the level of safety stock to maintain, which
are also dependent on the decisions of retailer assignments.
Following another assumption made in Shen et al.

(2003), we assume that the non-DC retailers maintain only
a minimal amount of inventory, and we therefore ignore
this inventory in the model below.
To model this problem, we define the following addi-

tional notation:

Additional Inputs and Parameters

• dij : cost per unit to ship from retailer j to retailer i for
each i ∈ I and j ∈ I .
• �: desired percentage of retailers’ orders satisfied

(fill rate).
• �: weight factor associated with the shipment cost.
• �: weight factor associated with the inventory cost.
• z�: standard normal deviate such that P�z� z��= �.
• h: inventory holding cost per unit of product per year.
• Fj : fixed cost of placing an order at distribution cen-

ter j for each j ∈ I .
• L: lead time in days.
• gj : fixed shipment cost from external supplier to dis-

tribution center j .
• aj : per unit shipment cost from external supplier to

distribution center j .

Note that to simplify the notation, we have assumed that
all lead times are equal. In this case, the model reduced to

min
∑
j∈I

(
fjXj +

[∑
i∈I
���idij +�aj�i�Yij

]

+
√
2�h�Fj +�gj�

√∑
i∈I

�iYij + �hz�
√
L
√∑

i∈I
�2i Yij

)

≡∑
j∈I

(
fjXj +

(∑
i∈I

d̂ijYij

)

+Kj

√∑
i∈I

�iYij + q
√∑

i∈I
�2i Yij

)
(6)

subject to∑
j∈I

Yij = 1 for each i ∈ I� (7)

Yij −Xj � 0 for each i� j ∈ I� (8)

Yij ∈ �0�1� for each i� j ∈ I� (9)

Xj ∈ �0�1� for each j ∈ I� (10)

where

d̂ij = ��i�dij + aj��

Kj =
√
2�h�Fj +�gj��

q = �hz�
√
L�

The objective function minimizes the weighted sum of
the following four cost components:
• The fixed cost of locating facilities, given by the term∑
j fjXj .• The annual shipment cost from the distribution centers

to the non-DC retailers, given by the term ��
∑

i∈I ��idij +
aj�i�Yij �.• The expected working inventory cost, given the solu-
tion to the EOQ equation with ordering cost Fj +�gj , hold-
ing cost �h, and demand

∑
i∈I �iYij .

• The annual safety stock cost, given by �hz�
√
L ·√∑

i∈I �2i Yij .
This is easily seen to be a special case of the generic

risk-pooling network design problem presented earlier.

3.2. The Set-Covering Formulation

The nonlinear integer-programming model proposed earlier
is normally approximated by converting the problem to
a linear integer-programming problem, through lineariz-
ing the objective function (cf., Erlebacher and Meller
2000). We can also solve the proposed nonlinear integer-
programming problem directly using the Lagrangian relax-
ation approach (cf., Daskin et al. 2002). We propose in
the rest of this section a different but equivalent way to
study the generic risk-pooling network design problem. The
advantage of this approach is that it gets rid of the nonlin-
earity (using exponentially many variables) inherent in the
previous model, and it is known to be equivalent (“dual”)
to the Lagrangian relaxation approach.
Note that every feasible solution to our decision problem

consists of a partition of the set I of retailers into nonempty
subsets, R1�R2� � � � �Rn, together with one designated DC
for each of these n sets.
Let � be the collection of all nonempty subsets of the

set I . Let cR� j be the total cost associated with DC j serving
the set of retailers in R. That is,

cR� j = fj +
∑
i∈R

�ij +Gj

(∑
i∈R

�i

)
+Hj

(∑
i∈R

�2i

)
�

Let zR� j = 1 if DC j is used to serve the set of retail-
ers in R. The set-covering model for the network design
problem can now be formulated as

���� min
∑
R∈�

∑
j∈I

cR� jzR� j



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
52 Operations Research 53(1), pp. 48–60, © 2005 INFORMS

subject to

∑
R∈�% i∈R

(∑
j∈I

zR� j

)
� 1 ∀i ∈ I�

zR� j ∈ �0�1� ∀R ∈��

We begin each iteration by solving the linear relaxation
of the above set-covering model, using a partial set of
columns, to obtain an optimal solution z̄R� j , R ∈�, and the
corresponding optimal dual solution &i, i ∈ I .
We want to know for each column �R� j�, whether the

reduced cost

cR� j −
∑
i∈R

&i � 0

is nonnegative for each R ∈�. If the answer is yes, then z̄
is an optimal solution to ����. If, on the other hand, a
column �R� j� with negative reduced cost is found, then
the column �R� j� is added to the master LP, and the next
iteration begins.
Finding R⊆� and j ∈ I with negative reduced cost, or

proving that no such pair �R� j� exists, is called the pricing
problem.
To solve the pricing problem, we need to solve for each

fixed j , the following integer-programming problem:

��j � min fj +
∑
i∈I
��ij − &i�Yij

+Gj

(∑
i∈I

�iYij

)
+Hj

(∑
i∈I

�2i Yij

)

subject to

Yij ∈ �0�1� ∀i ∈ I �

4. The Pricing Problem
In this section, we propose an algorithm to solve the pricing
problem ��j �. To simplify the notation, we define

ai %= �ij − &i�

bi %=�i�

ci %= �2i �

zi %= Yij

for each i ∈ I . Note that fj does not depend on Yij and,
hence, can be ignored for discussion here. We now have
the following problem �j for designated distribution center
j ∈ I :

�� ′
j � min

∑
i∈I

aizi +Gj

(∑
i∈I

bizi

)
+Hj

(∑
i∈I

cizi

)

subject to

zi ∈ �0�1� ∀i ∈ I �

For each j ∈ I , define set function gj on I as follows: For
each S ⊆ I ,

gj�S�≡
∑
i∈S

ai +Gj

(∑
i∈S

bi

)
+Hj

(∑
i∈S

ci

)
� (11)

The above problem can also be reformulated as

min
S⊆I

gj�S��

Let z∗ be an optimal solution to �� ′
j �, with associated

optimal objective value (∗
j . The minimum reduced cost set

R∗
j ⊂ I is then the collection of retailers i ∈ I with z∗i = 1.
If (∗

j + fj � 0, then the column �R∗
j � j� has nonnegative

reduced cost. Hence, we can conclude that there is no set
R ∈� having designated distribution center j with negative
reduced cost. Otherwise, we obtain a column with negative
reduced cost.

Lemma 1. Given a retailer j ∈ I , there exists a minimum
reduced cost set R∗

j ⊂ I with ai < 0 for every i ∈R∗
j .

Proof. Let i ∈ R∗
j . Because bi� ci � 0, and if ai � 0, then

for any solution z̄ with z̄i = 1, the objective function value
is at least as great as that of the solution obtained from z̄ by
setting z̄i = 0. This follows because Gj and Hj are assumed
to be concave and nondecreasing. By repeating this process,
we obtain a set R∗

j with the desired property. �

Hence, we may restrict our search for R∗
j to retailers

in I−, where I− %= �i ∈ I % ai < 0�. We next identify a nice
structural property of the set R∗

j by extending an argument
in Chakravarty et al. (1985).
Let aS =

∑
i∈S ai, bS =

∑
i∈S bi, and cS =

∑
i∈S ci. Define

a new function

hj�x� y� z� %= x+Gj�y�+Hj�z�� (12)

Note that hj�x� y� z� is a separable concave function, and

min
S⊆I−

gj�S�=min
S⊆I−

hj�aS� bS� cS�� (13)

Because the set ��aS� bS� cS� % S ⊆ I−� is finite, its convex
hull, which will be denoted by H , is a convex polyhedron.
Now, because the function hj is concave,

min
S⊆I−

gj�S�=min
S⊆I−

hj�aS� bS� cS�

= min
�a� b� c�∈H

hj�a� b� c��

as the latter minimization problem attains a minimum at an
extreme point of H .
Let �a∗� b∗� c∗� be an extreme point of H . Because H is

a polyhedron, it is well known that there exists a linear
function f on H that attains its unique minimum over H
at �a∗� b∗� c∗�. Because f is linear, it has a representation
f �a� b� c�= �′a+�′b+	 ′c defined by real numbers �′, �′,



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
Operations Research 53(1), pp. 48–60, © 2005 INFORMS 53

and 	 ′. The uniqueness of �a∗� b∗� c∗� as the minimizer
of f over H assures that we do not have �′ = �′ = 	 ′ = 0.
Because H is the convex hull of ��aS� bS� cS� % S ⊆ I−�,

�′a∗ +�′b∗ +	 ′c∗ = min
�a� b� c�∈H

�′a+�′b+	 ′c

=min
S⊆I−

�′aS +�′bS +	 ′cS

=min
S⊆I−

∑
i∈S
��′ai +�′bi +	 ′ci��

The set S∗ = �i ∈ I− % �′ai + �′bi + 	 ′ci < 0� is clearly
optimal for the above optimization problem. Hence, we
conclude from the uniqueness property that �a∗� b∗� c∗� =
�aS∗� bS∗� cS∗�; i.e., R

∗
j = S∗.

Note that S∗ = �i % �′ai + �′bi + 	 ′ci < 0� = �i % �′ +
�′�bi/ai� + 	 ′�ci/ai� > 0� = �i % �′xi + 	 ′yi < �′�, where
xi =−bi/ai and yi =−ci/ai. Here, xi� yi � 0 for all i.
To determine S∗, we need to determine the corresponding

values for �′, �′, and 	 ′. Although there are infinitely many
choices for the parameters �′, �′, and 	 ′, it turns out that
the number of distinct partitions obtained by varying the
parameters are limited. It is not difficult to see why the
number of partitions obtained this way will not be large.
Consider the following examples with four retailers (see
Figure 1).
The position of the retailers in Figure 1 corresponds to

the coordinate �xi� yi� given above. By varying the param-
eters �′, �′, and 	 ′, we are looking for distinct partitions
of the set of retailers with half-space in the plane. Note
that instead of 24 = 16 possible partitions, the number is
restricted by the position of the points in the plane. For
instance, Retailers 2 and 3 cannot be candidates, because it
is not possible to separate them from Retailers 1 and 4 by
using the intersection of a half-space and the set of points.
This phenomenon can be studied using a general result in

the theory of VC-dimension (cf., Vapnik and Chervonenkis
1971). To describe this result, we need to first introduce
some notations.

Figure 1. Partitioning.

1

42

3

The VC-dimension is defined for any set system � ⊂ 2X
on an arbitrary set X. It is the supremum of the sizes of
all shattered subsets � ⊂ X; here � is called shattered if
� �� = 2�; i.e., for any �⊂� there exists a set S ∈� such
that �= � ∩ S. For example, if � denotes the system of
all closed half-planes in the plane, then it is not difficult to
check that the VC-dimension of the set system � is three,
because no four points in the plane can be shattered by
using only half-planes.
The following well-known result shows that the number

of possible candidates for S∗ is essentially small:

Lemma 2 (Vapnik and Chervonenkis 1971, Sauer
1972). For any set system � of VC-dimension at most d,
we have �� �X ��-d��X��, where

-d�m�=
(
m
0

)
+
(
m
1

)
+ · · ·+

(
m
d

)
�

The above lemma suggests that we need to search among
at most O�n3� possible subsets to determine S∗.
The complexity of the above algorithm can be slashed

down further to O�n2�, by enumerating over the extreme
points of an associated zonotope (cf., Onn and Schulzman
2001) using an incremental algorithm. This algorithm, how-
ever, is not efficient in practice, because of the sophisticated
data structure needed to implement the incremental algo-
rithm. In the rest of this section, we show a more efficient
and direct approach.

Algorithm for the Pricing Problem

Note that the parameters ��′��′� 	 ′� for the optimal S∗ can
be chosen to be the gradient function of hj�x� y� z�= x+
Gj�y�+Hj�z� at the optimal solution �a∗� b∗� c∗�. Hence,
we can assume that �′ = 1, �′ � 0, and 	 ′ � 0. The problem
reduces to finding S∗ such that

S∗ = �i % �′xi +	 ′yi < 1��

The case where �′ = 0 or 	 ′ = 0 is easy to handle and
reduces to the special cases discussed in Shen et al. (2003).
We assume next that �′ > 0 and 	 ′ > 0. Let

fi = �′xi +	 ′yi − 1�
Let k1 = argmax�fi % fi < 0�; i.e., k1 corresponds to the
retailer with the largest negative fi. Note that S

∗ must now
satisfy

S∗ = �i % fi � fk1�∪ �k1�

= �i % �′�xi − xk1�+	 ′�yi − yk1�� 0�∪ �k1�

for all i ∈ I−\�k1�.
We partition the set I−\�k1� (say with cardinality L) into

four different subsets, S1, S2, S3, and S4, with �S1� =m1,
�S2� = m2, �S3� = m3, and �S4� = L − m1 − m2 − m3. For
retailer i ∈ I−\�k1�, if �xi − xk1�/�yi − yk1� � 0, then i



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
54 Operations Research 53(1), pp. 48–60, © 2005 INFORMS

Figure 2. Different subsets.

X

Y

S1

S2

S3

S1

S4

(xk1
,yk1

)

belongs to set S1. If �xi − xk1�/�yi − yk1� > 0 and xi < xk1 ,
yi < yk1 , then retailer i belongs to set S2; if �xi − xk1�/
�yi − yk1� > 0 and xi > xk1 , yi > yk1 , then retailer i belongs
to set S3. All the remaining retailers in I−\�k1� belong to
set S4. It is easy to see that yi = yk1 for i ∈ S4. See Figure 2
for a graphical illustration of the four subsets.
We further sort the retailers in subset S1 by relabelling

the indices if necessary, so that

x1− xk1
y1− yk1

�
x2− xk1
y2− yk1

� · · ·� xm1 − xk1
ym1 − yk1

� 0� �∗�

Because �′ > 0 and 	 ′ > 0, i ∈ S∗ for all i in S2 and
i � S∗ for all i in S3. For i ∈ S4, because �

′ > 0, i ∈ S∗ if
and only if xi − xk1 � 0.
To determine whether i ∈ S∗ if i ∈ S1, first note that

xi − xk1
yi − yk1

�
xj − xk1
yj − yk1

if and only if

�′ xi − xk1
yi − yk1

+	 ′
� �′ xj − xk1

yj − yk1
+	 ′�

We consider the following three cases:

Case (a). Suppose that there exists a retailer k2 such that
the (open) interval(
�′ xk2 − xk1
yk2 − yk1

+	 ′��′ xk2+1− xk1
yk2+1− yk1

+	 ′
)

contains the point 0.

Claim 1. If i� k2, then i ∈ S∗ if and only if yi − yk1 > 0.

Proof. Because

�′ xi − xk1
yi − yk1

+	 ′
� �′ xk2 − xk1

yk2 − yk1
+	 ′ < 0�

we have

�′�xi − xk1�+	 ′�yi − yk1� < 0

if and only if yi − yk1 > 0� �

Similarly,

Claim 2. If m1 � i � k2 + 1, then i ∈ S∗ if and only if
yi − yk1 < 0.

Proof. Because

�′ xi − xk1
yi − yk1

+	 ′
� �′ xk2+1− xk1

yk2+1− yk1
+	 ′ > 0�

we have

�′�xi − xk1�+	 ′�yi − yk1� < 0
if and only if yi − yk1 < 0� �

Case (b). Suppose that there exists a retailer k2 such that
�′�xk2 −xk1�/�yk2 −yk1�+	 ′ = 0. Then, clearly, k2 satisfies
fk2 � fk1 and hence k2 ∈ S∗. Furthermore, all i with

xi − xk1
yi − yk1

= xk2 − xk1
yk2 − yk1

are also candidates for S∗ because they all satisfy
fi = fk2 � fk1 .

Case (c). Suppose there is no retailer k2 that satisfies
Case (a) or Case (b), i.e., either

0<�′ x1− xk1
y1− yk1

+	 ′ or 0>�′ xm1 − xk1
ym1 − yk1

+	 ′�

Then, conditions similar to the two situations discussed in
Case (a) can be used to determine whether i ∈ S∗. �

Therefore, we obtain the following characterization for
the set S∗:

Theorem 1. The optimal solution S∗ satisfies the follow-
ing properties for some k1 and k2, and with the retailers
ordered as in �∗�:

1. k1 ∈ S∗.
2. For all i ∈ S1, either Case (a) holds:
• for all i ∈ �1�2� � � � � k2�, i ∈ S∗, if and only if

yi − yk1 > 0;• for all i ∈ �k2 + 1� � � � �m1�, i ∈ S∗, if and only if
yi − yk1 < 0;

or Case (b) holds:
• for all i < k2, with

xi − xk1
yi − yk1

<
xk2 − xk1
yk2 − yk1

� i ∈ S∗�

if and only if yi − yk1 > 0;• for all i > k2, with

xi − xk1
yi − yk1

>
xk2 − xk1
yk2 − yk1

� i ∈ S∗�

if and only if yi − yk1 < 0;• for i such that

xi − xk1
yi − yk1

= xk2 − xk1
yk2 − yk1

� i ∈ S∗�



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
Operations Research 53(1), pp. 48–60, © 2005 INFORMS 55

3. For all i ∈ S2, i ∈ S∗;
4. For all i ∈ S3, i � S∗;
5. For all i ∈ S4, i ∈ S∗, if and only if xi − xk1 � 0.

The above theorem provides an efficient method for find-
ing S∗, thus solving the pricing problem �j . Although k1
and k2 are not given a priori, we can simply guess k1 from 1
to n and k2 from 1 to m1 (after sorting to satisfy �∗�).
For each pair of k1 and k2, we can easily generate all the
solutions satisfying the above properties and then select the
one with the lowest objective value. It is easy to see that
for each specific k1, there are at most 2n such solutions.
They can be listed immediately after sorting the values
�xi − xk1�/�yi − yk1�. With a bit of reflection, it is easy to
see that we are able to compute the entire list of the can-
didate solution for S∗ with O�n� multiplications, additions,
and square-root computations. Thus, sorting, which can be
done in time O�n logn�, is the dominant step in this algo-
rithm. We need to do this sorting n times, one for each k1
ranging from 1 to n, so the computational complexity of
this algorithm is O�n2 logn�.

Theorem 2. The problem minS⊆I− gj�S� can be solved in
O�n2 logn� time.

5. Variable Fixing
In the straightforward implementation of the above algo-
rithm, we need to solve, for each retailer, a related submod-
ular function minimization problem where the retailer is
assumed to be the DC. This slows down the column gener-
ation routine considerably. We show next how information
on the primal and dual solution can be used to “fix” vari-
ables, so that we can determine whether a retailer will be
a DC candidate in an optimal solution early in the column
generation routine.
Recall that the set-covering model we are trying to solve

is of the form

min
∑
R∈�

∑
j∈I

cR� jzR� j

subject to

∑
R∈�% i∈R

(∑
j∈I

zR� j

)
� 1 ∀i ∈ I�

zR� j ∈ �0�1� ∀R ∈��

At each stage of the column generation routine, we have
• A set of dual prices �&j�.
• A set of primal feasible (fractional) solution zS� j .
• After solving the pricing problem (one for each

potential DC location), we obtain the reduced cost rj ≡
minS% j∈S�cS� j −

∑
k∈S &k�. Note that some of the rjs may be

nonnegative.
Let ZIP and ZLP denote the optimal integral and fractional

solution to the set-covering problem.

Claim 3.
∑

j% rj�0
rj +

∑
j &j is a lower bound to ZIP.

Proof. In the optimal IP solution, by concavity of the
objective function, it is easy to check that cS� j + cT � j �
cS∪T � j . Hence, the inequality
∑
S

zS� j � 1

is a valid inequality for the problem. We can add the above
inequality, one for each j , to the set-covering model, to
obtain a stronger LP relaxation. The Lagrangian dual of the
new LP relaxation is thus equivalent to

L�3�=∑
j

3j +min
{(∑

j

∑
S

(
cS� j −

∑
k∈S

3k

)
zS� j

)
%

1� zS� j � 0�
∑
S

zS� j � 1 ∀j
}
�

The problem decomposes for each retailer j , and hence
ZIP �max3 L�3�� L�&�=∑

j &j +
∑

j% rj�0
rj . �

Let j∗ be a retailer such that r∗j > 0. Let UB be an upper
bound for ZIP.

Claim 4. If
∑

j% rj�0
rj +

∑
j &j + rj∗ >UB, then retailer j∗

will never be used as a DC in the optimal solution to the
(integral) set-covering problem.

Proof. To see this, suppose otherwise. Then, ZIP remains
unchanged if we impose the additional condition

∑
S zS� j∗ =

1 to the existing set of constraints. The Lagrangian dual, in
this case, reduces to

L′�3�

=∑
j

3j +min
{(∑

j

∑
S% j∈S

(
cS� j −

∑
k∈S

3k

)
zS� j

)
% 1� zS� j � 0�

∑
S

zS� j � 1 ∀j� ∑
S

zS� j∗ = 1
}
�

Hence, ZIP � max3 L
′�3� � L′�&� = ∑

j &j +
∑

j% rj�0
rj +

rj∗ . On the other hand, we have ZIP �UB. This gives rise
to a contradiction. �

Note that once we determine that the retailer j∗ will
never be used as a DC in the optimal solution, then we do
not need to solve the pricing problem corresponding to j∗

anymore in the rest of the column generation procedure. In
fact, all columns arising from using j∗ as a DC (generated
previously) can also be deleted from the LP. This is the key
advantage of the variable fixing method.
The variable fixing method depends largely on the qual-

ity of the upper bound UB. If ZLP = ZIP, then the solution∑
S� j cS� jzS� j generated at each stage of the column gener-

ation routine will be an upper bound to ZIP. Unfortunately,
this is not true for all instances. As in Daskin et al. (2002),
we generate an upper bound for the IP by generating a
feasible solution in the following way:
• Let z∗ be the optimal LP solution obtained by solving

the problem using a partial set of columns.



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
56 Operations Research 53(1), pp. 48–60, © 2005 INFORMS

• Order the retailers according to nondecreasing value
of demand.
• Starting from the first retailer (say i) on the list, if for

some S and j , i ∈ S and z∗S� j = 1, then retailer i is served
by DC j . Otherwise, there exist S, T , both containing i,
and j , k, such that z∗S� j > 0 and z

∗
T �k > 0. We serve i using

the DC that will lead to the least total cost, and remove
retailer i from the list.
• Repeat the previous step until the list is empty.
In this way, we can generate a feasible solution to the

distribution network design problem. This solution will be
used as a bound to perform variable fixing in the column
generation routine.

6. Computational Results
In this section, we summarize our computational experi-
ence with the algorithms outlined in the previous section.
All the instances were solved on a COMPAQ P3-450 sta-
tion running the Windows 2000 operating system. We used
the risk-pooling model as described in Shen et al. (2003)
to design the computational experiment for our model. To
facilitate proper comparison, we have also imposed the
additional assumption, used in Shen et al. (2003), that a DC
at retailer j must be used to serve the demand at retailer j .
Note that this is not necessarily true in the optimal solution.
The solution approach described for the general case can
be easily modified to handle this additional assumption. We
leave the details to the readers.

6.1. Submodular Function Minimization

The purpose of this section is to test the performance-of-
pricing algorithm. The code is written in C++. � is ran-
domly generated in 650%�100%7, � is generated uniformly
in 60�001�0�017, � is randomly generated in �0�207, and all
the other parameters are generated uniformly in 60�1007.
Table 1 presents the relation between the average CPU

time needed (averaged over 20 different instances) and the
number of retailers in the problem. For each instance, we
vary the DC choices over all the possible retailer locations.
The CPU time we report is the total running time for solv-
ing all the pricing problems with each retailer as the DC at
a time.
Up to 320 retailers, each pricing problem can be solved

in less than two seconds. This shows that the pricing prob-
lem for moderate to large-size problems can be solved effi-
ciently using this method.

Table 1. CPU time of the pricing algorithm.

No. of retailers CPU time (seconds)

10 0�01
20 0�07
40 0�73
80 6�91
160 60�3
320 554

6.2. Stochastic Network Design Without
Variable Fixing

In this subsection, we report the results of solving the net-
work design problem using the column generation method.
The algorithm for the general network distribution prob-
lem is coded in C++, and the LP problem is solved using
CPLEX LP Solver.
The mean demands �i and �2i are randomly generated

in 6100�16007 for all i ∈ I . Holding cost is 1, z� = 1�96
(97.5% service level), ai = 5, gi = 10, and Fi = 10 for all
i ∈ I . Our goal is to find ranges of values for � and �
that resulted in instances that varied in solution difficulty
as well as the fraction of retailers used as DCs in the
solution.
For each of the instances, we first solve the LP relaxation

of the set-covering model via column generation. The initial
set of columns includes all singletons. The column labelled
“No. of columns generated” indicates the total number of
columns added during this phase. The resulting final opti-
mal objective value is denoted by ZLP. In most instances
generated, the corresponding optimal solutions are integral.
We denote by ZH the best upper bound we obtained. In
the case where the LP relaxation solution is not integral,
ZH is obtained by applying an IP solver to the final master
problem.
To speed up the column generation algorithm, we do not

solve the pricing problem at every iteration. Instead, we
maintain a column pool and we first look for columns with
negative reduced cost in the column pool. If the search is
successful, we add these columns to the master problem.
We also update the reduced costs of the columns in the
column pool and remove those with large positive reduced
costs from the pool. We solve the pricing problem only
when the column pool is empty. When this happens, the
pricing algorithm is run to either prove the optimality of
the current solution or to find new columns with negative
reduced costs.
Tables 2, 3, and 4 show the results of our computational

study.
The above algorithm becomes very time consuming

when the number of retailers exceeds 120. For this reason,
we do not report computational results for larger instances.
To tackle a larger-scale problem, we turn to the variable
fixing method.

6.3. Stochastic Network Design with
Variable Fixing

The column labelled “No. of DCs Out” indicates the num-
ber of retailers ruled out from being possible DCs in the
optimal LP solution by the variable fixing technique. The
parameters we use for the instances below are the same as
what we used for the previous subsection. Only when the
column pool is empty shall we do the variable fixing pro-
cedure again. Tables 5, 6, 7, 8, and 9 highlight the results
of our computational study.



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
Operations Research 53(1), pp. 48–60, © 2005 INFORMS 57

Table 2. Computational results for the 40-retailer
instance.

Input
Output

No. of DCs CPU No. of columns
� � opened time generated ZH/ZLP

0.001 0�1 5 62 2�661 1
0.002 0�1 7 16 961 1�001
0.003 0�1 8 7 543 1
0.004 0�1 10 6 466 1
0.005 0�1 14 5 364 1

0.001 0�1 5 62 2�661 1
0.002 0�2 6 16 974 1�001
0.005 0�5 9 6 492 1

0.005 0�1 14 5 364 1
0.005 1 11 6 430 1�003
0.005 5 8 9 828 1
0.005 10 7 28 1�643 1�001

Table 3. Computational results for the 80-retailer
instance.

Input
Output

No. of DCs CPU No. of columns
� � opened time generated ZH/ZLP

0.001 0�1 7 414 9�984 1
0.002 0�1 9 201 6�031 1
0.003 0�1 12 94 2�548 1
0.004 0�1 21 47 1�042 1
0.005 0�1 24 26 511 1

0.001 0�1 7 414 9�984 1
0.002 0�2 13 84 2�077 1
0.005 0�5 18 52 1�196 1

0.005 0�1 24 26 511 1
0.005 1 10 102 3�096 1
0.005 10 8 364 9�072 1

Table 4. Computational results for the 120-retailer
instance.

Input
Output

No. of DCs CPU No. of columns
� � opened time generated ZH/ZLP

0.0001 0�01 11 742 21�537 1
0.0002 0�01 15 516 11�476 1
0.0003 0�01 24 213 4�997 1�001
0.0004 0�01 28 103 2�014 1
0.0005 0�01 33 57 1�043 1

0.0001 0�01 11 742 21�537 1
0.0002 0�02 23 215 5�021 1
0.0005 0�05 29 99 1�998 1

0.0005 0�01 33 57 1�043 1
0.0005 0�1 15 522 11�628 1
0.0005 0�5 12 635 17�142 1�002

Table 5. Computational results for the 40-retailer
instance with variable fixing.

Input

Output

No. of
No. of DCs No. of CPU columns

� � opened DCs out time generated ZH/ZLP

0.001 0�1 5 34 6 117 1
0.002 0�1 7 31 3 73 1
0.003 0�1 8 31 2 66 1
0.004 0�1 10 29 1 44 1�001
0.005 0�1 13 27 1 32 1

0.001 0�1 5 34 6 117 1
0.002 0�2 6 34 4 92 1�001
0.005 0�5 8 32 2 56 1

0.005 0�1 13 27 1 32 1
0.005 1 10 29 1 40 1�002
0.005 5 7 32 4 96 1
0.005 10 5 34 6 122 1�001

Table 6. Computational results for the 80-retailer
instance with variable fixing.

Input

Output

No. of
No. of DCs No. of CPU columns

� � opened DCs out time generated ZH/ZLP

0.001 0�1 6 74 31 348 1
0.002 0�1 8 72 20 202 1
0.003 0�1 12 67 14 147 1
0.004 0�1 21 58 9 84 1
0.005 0�1 24 56 7 66 1

0.001 0�1 6 74 31 348 1
0.002 0�2 13 66 14 142 1
0.005 0�5 18 62 10 113 1

0.005 0�1 24 56 7 66 1
0.005 1 10 69 15 162 1
0.005 10 7 72 27 303 1

Table 7. Computational results for the 120-retailer
instance with variable fixing.

Input

Output

No. of
No. of DCs No. of CPU columns

� � opened DCs out time generated ZH/ZLP

0.0001 0�01 10 109 94 804 1
0.0002 0�01 15 105 61 480 1
0.0003 0�01 24 94 38 296 1
0.0004 0�01 28 90 27 184 1
0.0005 0�01 33 87 16 97 1

0.0001 0�01 10 109 94 804 1
0.0002 0�02 23 96 38 309 1
0.0005 0�05 29 90 26 166 1

0.0005 0�01 33 87 16 97 1
0.0005 0�1 15 104 62 496 1
0.0005 0�5 11 109 90 743 1�002



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
58 Operations Research 53(1), pp. 48–60, © 2005 INFORMS

Table 8. Computational results for the 250-retailer
instance with variable fixing.

Input

Output

No. of
No. of DCs No. of CPU columns

� � opened DCs out time generated ZH/ZLP

0.0001 0�01 19 229 221 1�663 1
0.0002 0�01 30 219 113 782 1
0.0003 0�01 49 201 78 466 1�002
0.0004 0�01 57 192 59 346 1
0.0005 0�01 68 182 35 201 1

0.0001 0�01 19 229 221 1�663 1
0.0002 0�02 44 206 83 526 1�001
0.0005 0�05 61 189 47 302 1

0.0005 0�01 68 182 35 201 1
0.0005 0�1 33 215 118 697 1
0.0005 0�5 20 230 211 1�479 1

By applying the variable fixing technique, we are able to
cut down the computational time dramatically. The average
CPU time is only about 9% of the CPU time without the
variable fixing technique. The savings range from about
83% to 94%. It is especially effective for those difficult
instances that required the most CPU times before. For
example, for �= 0�001, �= 0�1 in the 80-retailer case, we
are able to solve the problem in about 30 seconds after
applying the variable fixing technique, which used to take
414 seconds.
As we can see from these tables, the problem takes

longer to solve when � decreases for fixed � or when �
increases for fixed �. When the transportation costs
increase relative to other costs, i.e., � increases, the “No. of
DCs opened” increases too. However, when the inventory
costs increase relative to other costs, i.e., � increases, the
“No. of DCs opened” decreases.

Table 9. Computational results for the 500-retailer
instance with variable fixing.

Input

Output

No. of
No. of DCs No. of CPU columns

� � opened DCs out time generated ZH/ZLP

0.0001 0�01 42 458 512 3�742 1
0.0002 0�01 57 442 426 2�819 1�001
0.0003 0�01 95 404 248 1�405 1
0.0004 0�01 114 386 146 717 1
0.0005 0�01 146 354 86 446 1

0.0001 0�01 42 458 512 3�742 1
0.0002 0�02 90 409 314 1�833 1
0.0005 0�05 132 368 117 586 1

0.0005 0�01 146 354 86 446 1
0.0005 0�1 61 439 404 2�633 1
0.0005 0�5 44 455 503 3�572 1

7. Extensions

7.1. Distance Constraint

In the distribution network design problem, it is quite com-
mon to impose additional constraints on the collection of
retailers a DC can serve. For example, a typical geograph-
ical constraint stipulates that the designated DC and the
retailer cannot be too far apart. To enforce this constraint
in our approach is easy, because we can set the distance
function dij to a huge number if retailer j cannot act as the
DC for retailer i (or vice versa).

7.2. Capacity Constraint

Another common constraint states that a DC cannot handle
too many retailers (say not more than k retailers can be
served by a single DC), due to capacity or other technical
limitations. In this paper, we describe how our technique
can be extended to handle the additional constraint of the
type

∑
i Yi� j � k for some fixed k. Note that we are assum-

ing that retailer j needs not be served by the DC located at
its location.
In this case, the column generation phase reduces to solv-

ing a problem of the type

min
∑
i∈I

aizi +Gj

(∑
i∈I

bizi

)
+Hj

(∑
i∈I

cizi

)

subject to

zi ∈ �0�1� ∀i ∈ I�

zj = 1�∑
i

zi � k�

Because the objective function is concave and separable,
we can use the same argument to reduce the problem to a
parametric version:

min
S⊆I−

∑
i∈S
��′ai +�′bi +	 ′ci�zi

�PK�% subject to

zi ∈ �0�1� ∀i ∈ I−�∑
i∈I−

zi � k�

The candidate solution for the column generation phase
comes out as the solution to the above linear discrete opti-
mization problem for some choice of �′, �′, and 	 ′.
Let b��′��′� 	 ′� denote the value of the kth smallest

entry in the set

��′ai +�′bi +	 ′ci % i ∈ I−��

It is clear that if zi = 1 in an optimal solution to prob-
lem �PK�, then clearly �′ai + �′bi + 	 ′ci � b��′��′� 	 ′�
because �′ai + �′bi + 	 ′ci cannot be bigger than the kth



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
Operations Research 53(1), pp. 48–60, © 2005 INFORMS 59

smallest value. Furthermore, we need �′ai+�′bi+	 ′ci < 0,
otherwise we would have zi = 0 in the optimal solution.
Conversely, it is easy to see that zi = 1 in the optimal solu-
tion if the point i satisfies both inequalities.
The inequality

�′ai +�′bi +	 ′ci <min�b��
′��′� 	 ′��0�

determines a half-plane in 3D, and at most k out of possible
n− 1 points in the set

S ≡ ��ai� bi� ci� % i ∈ I−�

lies in this half-plane.
Hence, the number of candidate solutions depends on the

number of �k-set. Here, a �k-set is the intersection of S
and a half-plane containing at most k points. Clarkson and
Shor (1989) showed that the number of such solutions in
3D is bounded above by O�nk2�. Hence, the number of
candidate sets is still bounded by a polynomial in n.

8. Conclusion
In this paper, we have outlined a formulation of a stochastic
transportation-inventory network design model. The model
determines how many and where to locate regional DCs
and how to assign retailers to the DCs to minimize the total
system costs, which include DC location costs, inventory
costs at the DCs, and the transportation costs within this
two-echelon supply chain.
The model was originally proposed in Shen et al. (2003).

They were able to solve efficiently only two special cases
of the general model. We proposed an efficient algorithm to
solve the general pricing problem, with a worst-case run-
ning time of O�n2 logn�. Together with the variable fixing
technique, this yields a very efficient approach to solve a
moderate to large-scale network design problem to near
optimality.
We would like to emphasize the importance of being

able to solve the general supply chain design problem. The
two cases considered in Shen et al. (2003) require that
the demand be either deterministic or �2i /�i = 	 for every
retailer. However, in a lot of real-life situations, the demand
processes can be very different from retailer to retailer,
and the ratio of demand variance to mean demand are
not the same for different retailers. Supply chain network
design problems under such conditions are the ones that
the management is most concerned with, and our model
can be applied successfully in the decision-making process
for problems of this kind. Furthermore, we show that our
solution techniques can handle a more general risk-pooling
type of network design problem, because our algorithm
uses only the concavity property of the objective function.
We propose two important related future research direc-

tions. First, we believe that the network design problem
when each DC operates under the optimal �Q� r� policy

is worth exploring. This model captures the stochastic
inventory replenishment cost at the DC using a more
accurate cost model. The challenge in this problem, we
believe, lies in showing that the optimal cost of a �Q� r�
policy is concave in the average demand assigned. Second,
we hope to consider the cases with multiple items as well
as more general capacity constraints, and with more realis-
tic transportation cost structures.

Acknowledgments
The authors thank the associate editor and two referees for
constructive comments that led to this improved version
of this paper. This work was supported in part by NSF
grant DMI-0223323. This support is gratefully acknowl-
edged. The work of Zuo-Jun Max Shen was done while he
was with the University of Florida.

References
Barahona, F., D. Jensen. 1998. Plant location with minimal inventory.

Math. Programming 83 101–111.

Chakravarty, A. K., J. B. Orlin, U. G. Rothblum. 1985. Consecutive opti-
mizers for a partitioning problem with applications to optimal inven-
tory groupings for joint replenishment. Oper. Res. 33 820–834.

Chopra, S., P. Meindl. 2001. Supply Chain Management: Strategy, Plan-
ning and Operation. Pearson Prentice Hall, Upper Saddle River, NJ.

Clarkson, K. L., P. W. Shor. 1989. Applications of random sampling
in computational geometry. II. Discrete Comput. Geometry 4(5)
387–421.

Current, J., M. S. Daskin, D. Schilling. 2002. Discrete network loca-
tion models. Z. Drezner, H. Hamacher, eds. Facility Location
Theory: Applications and Methods, Chap. 3. Springer-Verlag, Berlin,
Germany, 81–118.

Daskin, M. S. 1995. Network and Discrete Location: Models, Algorithms,
and Applications. Wiley-Interscience, New York.

Daskin, M. S., Collette R. Coullard, Z. J. Max Shen. 2002. An inventory-
location model: Formulation, solution algorithm and computational
results. Annals Oper. Res. 110 83–106.

Drezner, Z., ed. 1995. Facility Location: A Survey of Applications and
Methods. Springer, New York.

Eppen, G. 1979. Effects on centralization on expected costs in a multi-
location newsboy problem. Management Sci. 25(5) 498–501.

Erlebacher, S. J., R. D. Meller. 2000. The interaction of location and
inventory in designing distribution systems. IIE Trans. 32 155–166.

Geoffrion, A. M., R. Power. 1995. Twenty years of strategic distribu-
tion system design: An evolutionary perspective. Interfaces 25(5)
105–127.

Geunes, J., Z. J. Shen, H. E. Romeijn. 2004. Economic ordering decisions
with market choice flexibility. Naval Res. Logist. 51(1) 117–136.

Graves, S. C., A. H. G. Rinnooy Kan, P. H. Zipkin. 1993. Logistics of
Production and Inventory. Elsevier Science Publishers, Amsterdam,
The Netherlands.

Grötschel, M., L. Lovasz, A. Schrijver. 1981. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica 1
169–197.

Iwata, S., L. Fleischer, S. Fujishige. 2001. A combinatorial, strongly
polynomial-time algorithm for minimizing submodular functions.
J. ACM 48 761–777.

Mirchandani, P. B., R. L. Francis. 1990. Discrete Location Theory. John
Wiley and Sons, New York.



Shu, Teo, and Shen: Stochastic Transportation-Inventory Network Design Problem
60 Operations Research 53(1), pp. 48–60, © 2005 INFORMS

Nahmias, S. 1997. Production and Operations Management, 3rd ed. Irwin,
Chicago, IL.

Onn, S., L. Schulman. 2001. The vector partition problems for convex
objective functions. Math. Oper. Res. 26 583–590.

Rado, R. 1942. A theorem on independence relations. Quart. J. Math.
Oxford 213 83–89.

Sauer, N. 1972. On the density of families of sets. J. Combinatorial Theory
Series A 1 145–1472.

Schrijver, A. 2000. A combinatorial algorithm minimizing submodular
functions in strongly polynomial time. J. Combinatorial Theory,
Series B 80 346–355.

Shen, Z. J. Max. 2000. Approximation algorithms for various supply chain

problems. Ph.D. thesis, Department of Industrial Engineering and
Management Sciences, Northwestern University, Evanston, IL.

Shen, Z. J. Max, C. Coullard, M. S. Daskin. 2003. A joint location-
inventory model. Transportation Sci. 37 40–55.

Teo, C. P., J. H. Ou, K. H. Goh. 2001. Impact on inventory costs with
consolidation of distribution centers. IIE Trans. 33(2) 99–110.

Vapnik, V. N., A. Ya. Chervonenkis. 1971. On the uniform convergence of
relative frequencies of events to their probabilities. Theory Probab.
Appl. 16 264–280.

Zipkin, P. H. 1997. Foundations of Inventory Management. Irwin, Burr
Ridge, IL.


