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PROBABILISTIC COMBINATORIAL OPTIMIZATION: MOMENTS,
SEMIDEFINITE PROGRAMMING, AND ASYMPTOTIC BOUNDS*

DIMITRIS BERTSIMAST, KARTHIK NATARAJAN? AND CHUNG-PIAW TEOS

Abstract. We address the problem of evaluating the expected optimal objective value of a
0-1 optimization problem under uncertainty in the objective coefficients. The probabilistic model we
consider prescribes limited marginal distribution information for the objective coefficients in the form
of moments. We show that for a fairly general class of marginal information, a tight upper (lower)
bound on the expected optimal objective value of a 0-1 maximization (minimization) problem can be
computed in polynomial time if the corresponding deterministic problem is solvable in polynomial
time. We provide an efficiently solvable semidefinite programming formulation to compute this tight
bound. We also analyze the asymptotic behavior of a general class of combinatorial problems that
includes the linear assignment, spanning tree, and traveling salesman problems, under knowledge of
complete marginal distributions, with and without independence. We calculate the limiting constants
exactly.
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1. Introduction. We analyze the optimal objective value of the generic 0-1 op-
timization problem with random objective coefficients. Let X = {1,...,n} and P
be a nonnegative integer that denotes the number of feasible solutions to the com-
binatorial optimization problem. Let {B,, p = 1,..., P} be nonempty subsets of X
that correspond to the set of feasible solutions. Without loss of generality, we assume
that the problem does not contain redundant variables, namely, for each ¢ € X, there
exists at least one feasible solution that contains 7 and at least one feasible solution
that does not contain i. The nominal 0-1 optimization problem in maximization form
is
(1.1) 7% (€)= max Ci.

p=be P s,

Traditional models solve the nominal 0-1 optimization problem under the assump-
tion that the objective vector c is completely deterministic. However, such models
ignore the inherent data uncertainty that may affect the quality of the output so-
lution. To overcome this shortcoming, an increasing research effort has focused on
addressing uncertainty in the objective function. The standard approach to tackle
such uncertainty is to assume an underlying distribution for the objective vector c.
Let 0 represent this prescribed multivariate distribution. For example, when @ is spec-
ified to be uniform on [0, 1] and i.i.d. for each coeflicient, it reduces to the classical
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model studied in probabilistic combinatorial optimization [28]. Examples of problems
that have been studied under this model are the linear assignment [1], quadratic as-
signment [6], and spanning tree problems [10]. The primary focus of such techniques
is to estimate the expected optimal objective value:

(1.2) Ep[Znax ()]

Evaluating this expectation exactly is nontrivial. Moreover, computing bounds on
this expected optimal value is already quite challenging.

In this paper, we study this problem under a more general setting. Specifically,
we consider a class of feasible distributions ©, and our objective is to find a tight
upper bound on the expected optimal objective value of the nominal 0-1 maximization
problem:

Zinax = SuPg  Ep[Z5ax(c)]

max

1.3
(13) st. 0€0O.

By a tight upper bound we refer to a valid upper bound on the expected objective
value that is achieved either exactly or asymptotically by a set of feasible distribu-
tions. Problem (1.3) arises naturally in applications where the distribution for the
objective coefficients is not completely known. As an example, consider the problem
of estimating an upper bound on the expected time of completion of a project that
consists of activities with precedence relationships for which we have information on
the expected duration and variability of individual activities but no information on
their correlation (see also section 4). Specifying the exact distribution in such prob-
lems is a potentially difficult task. Most traditional approaches make the additional
assumption of independence and try to estimate the expected optimal value. We,
however, drop this assumption of independence completely and provide insights into
the performance of the problem under dependence. Obtaining good lower bounds
on Ey[Z} .. (c)] is relatively easier by using Jensen’s inequality. Our results can be
easily extended to the analogous problem of finding a tight lower bound Z; on the
expected optimal objective value of the 0-1 minimization problem by setting ¢ := —c.
1.1. Structure of data uncertainty. The feasible set of multivariate distri-
butions © we consider is characterized by known information on the marginal dis-
tributions of each objective coefficient. Let F;(¢) = P(¢; < ¢) denote the complete
marginal distribution function of ¢;. We let ©(F7, ..., F,) denote the set of multivari-
ate distributions compatible with the marginal distributions F;. Note that this model
does not assume that objective coefficients are independently distributed, and hence
© is not uniquely specified. Under complete knowledge of marginal distributions Fj,
problem (1.3) is formulated as
Z:“lax = SUupy E9 [Z* ax(c)]

m

1.4
( ) st. 0€0O(Fy,..., F,).

Motivated by an application in project management, problem (1.4) was studied by
Meilijson and Nadas [21] in the context of computing the longest path in a directed
acyclic graph. Their main result shows that Z% .  can be computed by solving a
convex minimization reformulation of this problem. Weiss [31] observed that this
approach generalizes to the maximum flow and shortest route problem.

In this paper, we generalize this result to problems with limited information on
the distribution F;. We assume that the objective coefficient ¢, takes value in ©; (i.e.,
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the support of the random variable is possibly a subset of ;). The distribution is
also assumed to satisfy the moment equality constraints on real-valued functions of
¢; in the form Eg,[fir(c;)] = mik, kK = 1,...,k;. In the classical case, with power
functions fix(c;) = cf, this reduces to knowing the first k; moments of ¢;. Given this
information, the feasible set of marginal distributions for coefficient ¢; is represented
as

(1.5) F; = {F

Er[fik(ci)) =mix, k=1,... ki, Ep[lo,]= 1}7

where Ig(c;) =1 if ¢; € S and 0 otherwise. We assume that the feasible region F; is
nonempty and Er, [ ci H < 00 to guarantee a finite value for Z ... Under the marginal
moment information model, problem (1.3) is formulated as

Zr*nax = Sup@,Fl,...7Fn EG[Zry;lax(c)]
(1.6) s.t. F; €F;, i=1,...,n,
0€O(F,..., F,).

Remark. We make no assumptions on cross moment information in ©. As the
size of the problem increases, the number of estimates needed to capture dependent
structures grows exponentially in the dimension of the problem. Instead of trying to
characterize this exact structure, we optimize over all dependent structures with the
given marginal moment information.

1.2. Contributions. In this paper, building on the work of Bertsimas and
Popescu [4] connecting moment problems and semidefinite optimization, we gener-
alize the approach by Meilijson and Nadas [21] and develop techniques to compute
Z% o and Z% . for general 0-1 optimization problems. Our main contributions are as
follows:

(a) We provide a general optimization formulation to compute Z; . under limited
information on the marginal distributions of the objective coefficients. This
formulation has an exponential number of constraints in general.

(b) Given limited marginal moment information for the objective coefficients, we
show that an upper bound on Z ., first proposed in [21] in the context
of the longest path problem in a directed acyclic graph, is tight for general
combinatorial problems. Note that the tightness of the bound even in the
context of the longest path problem has not been known to hold in general;
see the discussion in [5, p. 844].

(c) For piecewise polynomial functions f;, we show that Z, .. can be computed
in polynomial time if the nominal 0-1 maximization problem can be solved in
polynomial time. We provide an efficiently solvable semidefinite programming
formulation with which to compute the Z .. in this case.

(d) We characterize the asymptotic behavior of the proposed bounds for a general
class of combinatorial problems under knowledge of complete and identical
marginal distributions. No assumptions on the independence of distributions
is made. For this model, we show that for the minimum cost N x N linear
assignment problem, the spanning tree, and the traveling salesman problem
on N vertices, with the distribution function of the cost coefficients satisfying

Fo(c) = pac® as ¢ | 0 for a > 0, the tight lower bound Z7%,  scales as

. Z:nin _ *
N3 <N<a—1>/a> = Ca,
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TABLE 1.1
Scaling constants with distribution function of form F(c) = pac® asc | 0.

_ . . . 3 UllIl
0-1 Optimization problem ngnoo < (a— 1)/a>
N X N Linear assignment (%) 2l

Spanning tree on N node complete graph (a— 1/0‘21/‘1

Traveling salesman on N node complete graph (L> _1/021/0‘

where C% is explicitly computed in Table 1.1. It is interesting that the asymp-
totic bounds exhibit the same scaling behavior (although with different con-
stants) under the assumption of independence and that the limiting constants
for the minimum spanning tree and the traveling salesman problems are the
same.

1.3. Structure of the paper. In section 2, we provide a general duality-based
approach with which to compute the tight upper bound on the expected optimal
objective value of a 0-1 maximization problem under marginal moment information.
Unfortunately, this formulation has exponentially many constraints in general. In
section 3, we obtain our first set of results based on the reformulation in [21] for the
problem. We introduce a semidefinite programming approach for solving a class of
such problems. In section 4, we provide numerical comparisons with other methods
for a particular application in project management. In section 5, we develop the
bound under complete and identical marginal distributions and provide new asymp-
totic bounds for classical combinatorial problems. In section 6, we summarize our
conclusions.

2. General approach. Given limited marginal information for each objective
coefficient ¢;, we are interested in computing the tight upper bound on the expected
optimal objective value of a 0-1 maximization problem. Given the feasible set of
marginal distributions in (1.5), we can rewrite problem (1.6) as

Ziax = supg  Ep[Z;,,.(c)]

(21) s.t. 9[fik(ci)]:mik7 k:L...,k‘i, izl,...,n,
Eylla] =1,
where Q denotes €7 X -+ x ,. We construct the dual of this formulation by in-

troducing a dual variable y;; for each moment equality constraint and ygo for the
probability mass constraint. Since the primal problem is bounded, the dual problem
is formulated as

n ki
Zp = min (yoo +Y ) yikmz’k>
(22) =1 k=1

s.t. Yoo + Z Zyikfik(ci ) = Znax(c) Ve € Q.
i=1 k=1
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THEOREM 2.1 (see Isii [14]). (a) The primal and dual formulations are related
by weak duality as Z,.. < Z},.

(b) Furthermore, if the moments lie interior to the set of feasible moment vectors
for arbitrary multivariate distributions, then strong duality holds, i.e., Z% .. = Z},.

The strong duality condition in Theorem 2.1(b) is a Slater-type regularity con-
dition that requires the moment vector to lie in the interior of the moment space.
Under marginal moment specification, the multivariate moment space is defined as
the product of univariate moment spaces. Checking for the interior point condition
hence reduces to checking for the interior point condition for the univariate moment
spaces. Such univariate conditions are easier to verify (as positive definiteness con-
ditions on the moments matrix [15]). From this point on, we assume that this regu-
larity condition is satisfied and hence the optimum objective value of problem (2.2),
ZB = Z:;laX'

We now express the right-hand side of the constraint in formulation (2.2) explic-
itly. Since the objective function Z .. (c) is a piecewise linear convex function, we

max

can rewrite the dual formulation as

n k}i
Zmax = Min (yoo + Z Z yikmik>
i=1 k=1
(2.3) Sk
s.t. Yoo +Zzyikfik(ci) - Z ;20 VeeQ, p=1,...,P.

i=1 k=1 i€B,

Each constraint in formulation (2.3) is equivalent to the nonnegativity of a multivari-
ate function over a subset of R™. For the simplest case with € defined by a discrete
set of values, problems (2.1) and (2.3) reduce to the standard linear programming
primal and dual problems. In general, there is an exponential number of such con-
straints due to the exponential number of feasible solutions to the nominal problem
(1.1). For the simplest case with f;x(c;) = ¢ and £ = R, each constraint reduces to
the nonnegativity of a multivariate polynomial over R™. A simple sufficient condition
to ensure this is a sum of squares decomposition for the polynomial. This condition
can be expressed by a positive semidefiniteness constraint on matrices of increasing
size in the dual variables (cf. [15] and [25]). As the order of the relaxation increases,
the size of these matrices increases drastically. Moreover, tractable necessary con-
ditions to ensure the nonnegativity of a multivariate polynomial are in general not
known. These reasons seem to suggest that formulation (2.3) is difficult to solve even
for simple f;x(-), regardless of the difficulty of the nominal problem.

3. Convex reformulation. In this section, we provide a reformulation for com-
puting Z .. that uses the marginal information structure of the objective vector based
on a formulation originally proposed in [21] for a specific combinatorial problem under
complete marginal distributions. Specifically, we apply the approach to general 0-1

optimization problems.

3.1. Complete marginal distribution information. We first focus on the
case with completely known marginal distributions F; for each objective coefficient,
and we outline the approach of Meilijson and Nadas [21]. We denote by zT =
max(0, ). For each feasible solution to problem (1.1) indexed by p and for an arbi-
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trary vector d € R™, we have

Zci = Zdi+ Z(czf

i€B, i€B, i€B,
< max E d; + E fd
1€Bp

= max +Z 7d

Since the right-hand side of the inequality is independent of any particular feasible
solution of problem (1.1), we have

Zinax(€) < Zia(d) + ) _[es — di] ™

i=1

Taking expectations with respect to F; and the minimum over d € R™ we obtain

Eg[Zax(0)] < min < hax (@) + ZEF — di ) 0 € O(Fy,..., Fy).
Furthermore, a joint probability distribution is constructed in [21] such that the upper
bound with given marginal distributions F; is tight. This brings them to their central
result that solving a convex minimization problem in n variables yields the tight upper
bound:

(3.1) sup  Ey|Z,,.(¢)] = min < max +ZEF - )

0€O(Fy,...,Fp) deR™

3.2. Partial marginal distribution information. In this section, we consider
the case where the marginal distribution function Fj is not assumed to be known ex-
actly but to lie in the set IF;. Optimizing over this set of feasible marginal distributions,
and using (3.1), the tight upper bound Z} . is obtained by solving

ax
AN sup min | Z>..(d) + E Eg,[c; .
F;€F;,i=1,....n dER™

By interchanging the order of sup and min, we obtain an upper bound on Z} .

1 Fi€F;

(3.2) Z o < min < = +Z sup Ep[c dﬂ*)-

Klein Haneveld [13] showed that if the optimal marginal distribution F;* € IF; for the
inner subproblem is the same for all d;, that is,

(33) sup EFi [Ci — dzrr = EFi* [Ci — di]+ Vd; € §R, i=1,...,n
F;eF;

then bound (3.2) is tight. We next give some examples of marginal moment informa-
tion under which condition (3.3) is satisfied.
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(a) Given bounded range ; = [¢;,¢;], since the function [¢; — d;]T is a nonde-
creasing function in ¢;, the optimal marginal distribution F}* is

PFi* (Ci = Ei) =1.
Solving formulation (3.2) yields the tight upper bound as

(3.4) Zt =

max max (E) °

(b) Given bounded range §; = [¢;,¢;] and first moment pu; for each coefficient ¢;,
the optimal marginal distribution F}* is known to be [20]

Gy
)_Ez‘—g

.
; Prr(ci=¢;) = Boa
C; — C

=i

PF;« (Ci = C,;

[ _
1
Since this distribution is independent of d;, solving formulation (3.2) yields the tight
bound Z; .. The decision vector d can be restricted to lie in the range 2 = [c, €]

without affecting the optimal value. Hence the tight upper bound is the solution to
the linear program:

* . * . Hi — & —
. Z = Z d _— i —d;) | .
(35) e = min, ( @+ (5 ) @ >>

(c) Given semi-infinite range ; = [¢;,00) and first moment pu;, Birge and Mad-
dox [5] extended the previous result to obtain

n

(36) Zrﬂ‘:lax = Zrﬂ‘:lax(g) + Z (MZ - Qi) :

i=1

However, with additional second moment information, the optimal two-atom dis-
tribution F;* is dependent on the variable d; [5]. Hence formulation (3.2) was not
known to be tight for higher order moment information. However, we next show that
it is in fact tight for any prescribed set of marginal moment information.

3.3. The main results. Let Z denote the optimum objective value of the
right-hand side of formulation (3.2). With prescribed marginal information in (1.5),
this bound is computed as

Z; = min (Z:;ax(d) +)° supp, B[ — di]+>
i=1
s.t. Epi[fik(ci)]zmik, k=1,...,k;, i=1,...,n,
Epllo]=1, i=1,...,n.

(3.7)

Since no cross moment information is known, the ith inner subproblem is written as

supp, Ep[c; — d;]*
s.t. EF,[fzk(cz)] = Mk, k= 1,...,]{%,

To formulate the dual of the ith subproblem, we introduce variables ;o for the prob-
ability mass constraint and g;; for the moment equality constraints. The dual of the
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univariate subproblem is then written as

ki
min (ﬂio +)° l?ikmik>

k=1
ki
st Yo+ Z@jikfik(ci) >c —d; Ve; €€Qy,
k=1
ki
Pio + Zgikfik(ci) >0 Ye; € Q.
k=1

Under the strong duality assumption, we substitute the dual of each subproblem into
formulation (3.7) to obtain the equivalent formulation:

n n k;
ZF = min (Z;;ax(d) + Z Yio + Z Zﬂikmik>
i=1 i=1 k=1
k;
(3-8) s.t. Pin(ci) == Fio + di + Zgzkﬁk(cz) —¢; >0 Ve €y, 1=1,...,n,
k=1
ki
pia(ci) = Yio + Zgikfik(ci) >0 Vep €€, i=1,...,n.
k=1

We denote by pi1(¢;) and pia(c;) the two univariate functions of ¢; that are nonnegative
over €;. There is a total of 2n such functions in formulation (3.8).

We next prove the equivalence of formulation (3.8) with the original dual (2.3),
rewritten here for clarity:

n k;
Zie = i <y 55 ym>
i=1 k=1
(3.9) -
s.t. y00+zzyikfik(ci) - Z ¢ >0 VeeQ, p=1,...,P.

i=1 k=1 i€B,

THEOREM 3.1. The upper bound on the expected optimal objective value of the
0-1 mazimization problem Z7 obtained by solving formulation (3.8) for a prescribed
set of marginal moment information s tight, i.e., Z7 = Z; ...

Proof. Clearly, formulation (3.8) provides an upper bound on the solution ob-
tained by solving formulation (3.9). Hence Z% .. < Z7.

To show the reverse inequality, consider an optimal solution to formulation (3.9)
represented by variables yg,, y;,. We now generate a feasible solution to formulation
(3.8) in the following manner. We set g;;, = yj;, for all k and ¢ with k,¢ > 1. Having
fixed the variables g, we solve problem (3.8) to optimality for the remaining variables.
Let g}, and d} be the corresponding optimal values for the remaining variables.

We first prove a minimality property of the nonnegative univariate functions in
formulation (3.8) that will be used later in the proof. We show that we can find an
optimal solution to this problem such that the value g, is minimal for p;2(c;) to be
nonnegative over €2;. To see why, suppose that there is an € > 0 such that we decrease
Uiy by € and pia(c;) remains nonnegative over €2;. Then we can increase d} by e such
that p;1 (¢;) remains unchanged. Since the objective function is an increasing function
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in g0, the modification in g;y decreases the objective function by e. Now, since
Z% . (d) = maxp(zzeB d;), the modification in d; changes the objective function by
at most ¢. Hence the above modification will not increase the objective function.

Let 3}, be chosen such that it is the minimal value for p;2(c;) to be nonnegative
over the specified support. Similarly, having fixed y},, we can decrease d} as long
as Pi1(c;) is nonnegative over §2; since the objective is an increasing function in d;.
Hence we can restrict our attention to optimal values of g}, and d} that are minimal
for the nonnegative functions p;;(¢;) and pia(c;) over ;.

In general, given n such univariate functions p;(¢;) = Zizl aix fir(¢;) + a0 with
a;p at the minimal value for p;(c;) to be nonnegative over §2;, the minimal value of
ago for the multivariate function p(e) = Y 1 ; 22;1 aix fir (¢i) + ago to be nonnegative
over 2 is > | a;o. To see this, we start with

ki
pilei) =Y ainfin(ci) +aio >0 Ve € Qyy i=1,...,m,
k=1
and add the n functions to obtain

ki

i aikfik(ci) + iaio >0 VeeN.

i=1 k=1 i=1

From the minimality of a;o for the univariate function p;(c;), we know that there
exists an ¢; € €); such that

pi(Ci) = Zaikfik(éi) +ap=0, i=1,...,n.

Adding these equalities, we obtain a vector é = (¢1,...,¢,) that lies in €2, which
satisfies

Zzazkfzk G +Za10 = 0.

=1 k=1

Thus, the minimal value for agg such that the function p(c) is nonnegative over  is
apo = Z?:l a;o-

Now consider any feasible solution to problem (1.1) indexed by p. Then, from
formulation (3.8) we obtain

ki

Vi such that i € By, i +df + nykfik(ci) —¢; >0 Ve €,
k=1

Vi such that i ¢ B,, ¢+ Zy;‘kfik(ci) >0 Ve; € Q.

k=1

Summing up these n constraints, we obtain

> i+ ZdWZZymfmcz Y620 VeeQ p=1,....P.
i=1

i€By, =1 k=1 i€By,
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From the minimality of the univariate functions, we know that 7" | 75 + >, B, &
is the minimal value for this function to be nonnegative over 2. Comparing this with
the multivariate function in formulation (3.9), we obtain

y00>zy20+zd p=1...,P

i€By

which reduces to
(3.10) Yoo = Z io + Ziax(d¥).

From formulation (3.8) we obtain

Zik S max d* + zyzo + Zzyzkmlk

i=1 k=1

Yoo + Z Z YikMik (from (3.10)),
i=1 k=1
|

IA

= ZA<

max-*

By setting ¢ := —c and d := —d, an equivalent result is obtained for Z7; .

COROLLARY 3.2. The tight lower bound on the expected optimal ob]ectwe value
of a 0-1 minimization problem for a prescribed set of marginal moment information
is obtained by solving

(3.11) Zr i = Inax (me + Z mf EF [min(0, ¢; — dl)]> .

3.4. Solution techniques. Since Theorem 3.1 implies that Z7, . = Z7, we
focus on solving formulation (3.8). We show that for a fairly general class of piecewise
polynomial functions f;z, this formulation can be solved as a semidefinite program.
Some examples of such functions are (¢;—a)™ or I(_ o 4. The power moment functions
fir(c;) = c¥ are included in this class.

For each coefficient ¢;, the constraints in formulation (3.8) imply the nonnegativity
of two univariate functions, p;1(c;) and ps2(c;) over ;. For piecewise polynomial
functions f;r, we can decompose the support set 2; to intervals 5, 7 = 1,...,1;
with U;€Q;; = Q; such that p;i(c;) and pia(c;) are polynomials over each of these
intervals. We can now rewrite formulation (3.8) as

Z:;lax = min ( max + Z Yio + Z Z yzkmzk>

(3.12) i=1 k=1
VCiEQZ‘j, 7=1...,0; i=1,...,n,

st piei) >0
>0 VCiGQij,jzl,...,li,izl,...,n7

sz( )

where the constraints now correspond to the nonnegativity of univariate polynomials
over ;;. If ;; is a finite set of atoms, this reduces to linear constraints.

The key observation is that although it is difficult to express exactly the nonnega-
tivity of a multivariate polynomial, we can use positive semidefinite constraints to ex-
press the nonnegativity of a univariate polynomial over an interval. This simplification



PROBABILISTIC COMBINATORIAL OPTIMIZATION 195

arises due to the equivalence of the sum of squares representation and nonnegativity
of a polynomial in the univariate case; see [23] and [4]. We focus on three specific
intervals, namely, the entire real line Q = (—o0, 00), the positive ray 2 = [0, 00), and
the segment @ = [0,1]. The semidefinite representation for all other intervals of R
can be obtained from simple affine transformations of these three cases.
PROPOSITION 3.3 (see Nesterov [23] and Bertsimas and Popescu [4]). (a) A uni-
variate polynomial f(c) = Ziio arc” is nonnegative over the interval Q) = (—o00,00)
if and only if there exists a positive semidefinite matric Y = [Yi;]; j=o,...k such that

ar = E Yi;, r=0,...,2k,
iji itj=r

Y ~-o0.

(b) A univariate polynomial f(c) = Zf»:o a-c” is nonnegative over the interval
Q2 =1[0,00) if and only if there exists a positive semidefinite matriz Y = [Yi;]i j=o,... .k
such that

0= > Yy, r=1,..k

i,j: i+j=2r—1
ar = E Yi;, r=0,...,k,
i,ji itj=2r

Y >0

(¢) A wunivariate polynomial f(c) = Zi:o arc” is nonnegative over the interval
Q = [0,1] if and only if there exists a positive semidefinite matric Y = [Yi;]i j=o0,... .k
such that

o= Y, r=1,...,k
i,j: itj=2r—1

(k-1
(rl)al: Z Yij;, r=0,...,k,

i,j: i+j=2r
Y > 0.

Clearly, from Proposition 3.3, we can replace the condition that a univariate
polynomial is nonnegative over an interval of ® by a requirement on a matrix to be
positive semidefinite and a set of linear equalities that must be satisfied. The specific
form depends on the nature of the interval Q). For example, from Proposition 3.3(a),
for a univariate polynomial to be nonnegative over R, the degree of the polynomial
must be even.

From Proposition 3.3, we can rewrite formulation (3.12) as

n n ki
Zt = min (z;m(d) Ryt ym>
=1

(3.13) i=1 k=1
s.t. Wij(gi07"'agikia_ladi7Qij)t07 jzla"'7li7 izl?"'an7
Xij(gio,...,giki,Qij)to, jzl,...,li,i:].,...,n7

where W;; and X;; denote the semidefinite constraint matrix Y obtained from Propo-
sition 3.3. The entries of the semidefinite matrix depends on the nature of the interval
2;; and the coeflicients of the polynomial.
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THEOREM 3.4. Given marginal distribution information as moments of piecewise
polynomial functions, the tight upper (lower) bound on the expected optimal objective
value of a 0-1 mazimization (minimization) problem can be computed in polynomial
time if the nominal problem can be solved in polynomial time.

Proof. Formulation (3.13) can be reformulated as

n n k;
Zmax = min (t + Z@io + Z Z ﬂikmik>
i=1 i=1 k=1
(314) s.t. Wij(giow--agik“*ladiagij) EO, j: 7~-~;li7 i:l,...,n,

Xz](:g7,077g7,k:”97,]) i 07 .7: 17"'alia 1= PR [
t> Zax(d),

where t is an additional variable. We have a polynomial number of polynomial-
size semidefinite matrices in this formulation. One approach to solve this prob-
lem is to disaggregate the term Z  (d) in terms of its feasible solutions. How-
ever, the number of linear constraints in such a formulation would be exponen-
tially large. This implies that solving formulation (3.14) is still difficult in general.
For the class of polynomially solvable 0-1 maximization problems, we can, however,
solve this efficiently by considering the separation version of the problem. Since the
semidefinite constraints are polynomial sized, this essentially reduces to the sepa-
ration problem: Given ¢ and d, verify if ¢ > Z} . (d), and if not find a violated
inequality.

To solve the separation problem, we solve the nominal discrete optimization prob-
lem with objective vector d. If this can be solved in polynomial time, then we can find
the optimal decision vector indexed by p* € {1,..., P} and Z%,.(d) in polynomial
time. Then we simply test if ¢ > Z* _(d), and if not an index p* is found such that
D i By d; > t. The desired result follows from the equivalence of separation and
optimization [11]. d

Remarks. (a) Theorem 3.4 implies that the tight lower bounds for the expected
optimal objective values of combinatorial problems such as the minimum spanning
tree, assignment, matching, and shortest path problems are computable in polynomial
time under the marginal moment model.

(b) The previously known results (3.4), (3.5), and (3.6) can be viewed as special
cases of our Theorems 3.1 and 3.4.

(¢) The results hold even if we only know upper bounds on moments on E|[f;x(c;)]-
The only difference is that the corresponding dual variables are nonnegative.

(d) The variables d; in formulation (3.14) can be restricted to lie in [¢;, ¢;], where
¢; and ¢; define lower and upper bounds on the range of ;.

The solution method described thus far is a general cutting plane algorithm that
solves the nominal problem (1.1) at each step in conjunction with semidefinite con-
straints. We now provide a compact semidefinite reformulation for a class of 0-1
optimization problems that may be useful computationally.

THEOREM 3.5. For 0-1 optimization problems with compact linear programming
formulations, the tight upper (lower) bound on the expected optimal objective value of
a 0-1 mazimization (minimization) problem under the marginal moment model can
be computed as a compact semidefinite program.

Proof. Any 0-1 optimization problem can be reformulated as a linear programming
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problem over the convex hull of its feasible region:

Z¥ox(d) =max d'z

(3.15) e
s.t. Ax <b,

where (A, b) provides the convex hull representation. Using linear programming du-
ality we have

Zk . (d) =min p'b
(3.16) st. pPA=d,
p > 0.

Substituting this dual into formulation (3.13), we obtain

n n ki
Zmax = Min (P'b SR gik"”ik)
i=1

=1 k=1
(317) s.t. ng(gz()» . ~;gikia_1;di79ij) i 0, ] = ].,. . .,li, 7= ].,. ey
le(g10)7g2k77Q’L]) t 07 ]: 17"-;li7 1= 17"'7”7
/ !
pA=d,
p>0.

The convex hull (A,b) representation could be exponentially large or not known
explicitly. However, for a class of problems this linear representation is compact.
For such problems, formulation (3.17) is a compact semidefinite program that can be
solved efficiently in polynomial time. a

Examples of 0-1 optimization problems with compact linear programming repre-
sentation include the assignment and network flow problems such as the shortest path
problem. The longest path problem on acyclic graph is also an example of 0-1 opti-
mization problem with compact LP formulation, although the longest path problem
is NP-hard in general.

4. Application in project management. In this section, we provide an ap-
plication of the techniques developed to the problem of computing the longest path in
a directed acyclic graph. Such problems arise in project management and scheduling.

4.1. Description of the problem. A project is specified as a set of activities
that has to be completed given certain precedence relationships. We represent a
project in an activity-on-arc framework with an acyclic directed graph G(VU{s, ¢}, E),
where |E| = n arcs. An arc in this graph represents an activity, and a node represents
the completion of all activities leading to this node. Node s represents the start of
the project while node t represents the completion of the project. The precedence
constraints in the graph imply that if there exist arcs (4,7) and (j, k) in the graph,
then job (4,j) must be performed before job (j,k). Such a graph constructed is
necessarily acyclic, otherwise it would lead to an inconsistent ordering of jobs. We
let the nonnegative random arc lengths c;; denote the time required to complete each
individual activity. Given this setup, the parameter of importance is the time required
to complete the project measured by the longest path from the start node s to the
end node t in the graph. The longest path in the graph Z}_  (¢) is computed by

max
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solving
Zmax(€) = max Z CijTij
(,7)€E
1 ifi=s
4.1 )
(1) st Y ay— Y wp=d -1 dfi=t,
J:(ij)EE §:(j,)EE 0 ifieV,

2y € {0,1) ¥(i,j) € E.

In fact, we will focus on a more general measure of project performance, called project
tardiness. Assume that we are specified a due date T for the project. Project tar-
diness is defined as a linear cost that is incurred only if the project completion time
Z7% . (c) exceeds the due date. If the project is completed before the deadline, then
no cost is incurred. Mathematically, it is expressed as a piecewise convex function of
project completion time:
Project tardiness G(T) := [Z} .. (¢) — T]™.

It is clear that for T'= 0, G(0) reduces to Z* . (c).

Computing the longest path in a general graph is NP-hard, while it is polyno-
mially time solvable for acyclic graphs [16]. However, if the arc lengths are ran-
dom variables that are distributed independently and restricted to two possible val-
ues, Hagstrom [12] has shown that the computation of the expected longest path
is #P-hard. Furthermore, the expected longest path cannot be computed in time
polynomial in the number of values the completion time takes unless P = N P. This
suggests that in general it is difficult to compute the exact expected project tardiness
under uncertainty in activity duration, hence motivating the interest in bounds and
approximations.

Robillard and Trahan [26] studied the expected completion time E[Z} . (¢)] under
assumptions of complete knowledge of distribution of activity durations and indepen-
dence. Assuming independence, but only limited moment information, Devroye [8]
computed upper bounds on the first moment and second moments of the comple-
tion time. However, Levy and Wiest [18] argued that activity durations are often
dependent due to resource limitations. It is, however, not practical to estimate this
complete multivariate joint distribution. Hence there has been effort focused on esti-
mating the expected case tardiness under knowledge of limited moment information
of the individual activities.

One approach to this problem deals with approximating the expected project
tardiness. Under specific assumptions on the moments, the central limit theorem has
been used to approximate the distribution of the project completion time; see [2], [27],
and [19]. Under this method, the completion times obtained from different paths in
the network are assumed to obey a multivariate normal distribution. Then, evaluating
the expected project tardiness involves calculating the maximum of correlated normal
distributions, a generally nontrivial calculation. Furthermore, if the various activities
are correlated, one needs to impose restrictions on the distribution of arc lengths for
the central limit theorem to apply. We do not make any such assumptions in this
paper. Finally, even if the central limit theorem can be applied, it will not be a good
approximation for smaller networks.

An alternative approach to the problem focuses on computing bounds on the
expected project tardiness. A simple lower bound can be computed by applying
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Fic. 4.1. Project network in Exzample 1.

Jensen’s inequality to the convex tardiness function. Computing tight upper bounds
is more challenging and more important as it provides an estimate of the worst case
performance. Klein Haneveld [13] provided a tight upper bound on E[G(T)] when
the first moments of activity durations are given. With additional second moment
information, Birge and Maddox [5] used the formulation in [21] to compute the upper
bound on expected tardiness. However, as the computational results indicate, an
approximation of the original objective function is used to compute this upper bound.
The lack of precision from using such a linearization approach for solving a nonlinear
problem demonstrates an additional advantage of using the semidefinite optimization
approach. It should be noted that while formulation (3.13) can be directly used to
compute the worst case expected project completion time, it could be easily extended
to the tardiness objective. Specifically, we need to replace the term Z} .. (d) in the
objective function by [Z¥ .. (d)—T]" and solve the corresponding semidefinite program
to compute the worst case expected tardiness denoted as G*(T'):

n n k;
G*(T') = min ([Z;;lax(d) — T + Z Yio + Z gikmik>
1

(4.2) i=1 i=1 k=
s.t. Wzg(gZOa e 7giki; 717di7Qij) t ) .7 = ]-a- .. »lia 1= 17' -, N,
ij(ganvgkuQz]) t 07 .] = 17"'7lia 1= 17"'7”'
Since Z} .. (d) can be computed in polynomial time, formulation (4.2) is solvable in

polynomial time.

4.2. Computational examples. We consider two sample projects taken from
[5]. The specified data are as follows:

(a) The minimum time required to complete each activity is known. We assume

that the maximum time required to complete an activity is infinity.

(b) For each activity, the first and second moments of the time to complete it
are known. In addition for the first project, third moment information is
assumed to be known. We add in this information to check the value of the
extra information on the upper bound.

Under this marginal moment information, we solve formulation (4.2) with SeDuMi
version 1.03 developed by Sturm [29]. An interior point method is used by the software
to solve the semidefinite program. The computations were conducted on a Pentium II
(550 MHz) Windows 2000 platform and the total computation time was less than a
minute.

Example 1. The first project depicted in Figure 4.1 consists of 10 activities that
are distributed over 3 paths. The marginal distribution information for the activities
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TABLE 4.1
Activity duration data for Example 1.

Arc | Range | First mom. | Second mom. | Third mom.
T | [L,00) 1.0 1.0 1.0
2 [4, 00) 3.0 9.333 30.0
3 (3, 00) 2.0 4.333 10.0
4 [3,00) 2.5 6.333 16.25
5 [7,00) 5.0 26.333 146.0
6 [5, 00) 4.0 16.333 68.0
7 | [5,00) 3.0 10.333 40.0
8 (5, 00) 4.5 20.333 92.25
9 (2, 00) 1.5 2.333 3.75
10 (6, 00) 5.0 25.333 130.0
TABLE 4.2
Upper bounds on expected tardiness for Example 1.
Information Bound/ T 0 15 | 18.33 | 21.67 | 25
Range, first, second mom. G*(T) reported in [5] | 20.35 | 5.35 | 2.98 | 1.27 | 0.73
Range, first, second mom. G*(T) from eq. (4.2) | 20.29 | 5.29 | 2.66 | 0.94 | 0.47
Range, first, second, third mom. | G*(T) from eq. (4.2) | 20.10 | 5.10 | 2.53 0.75 | 0.18

Fi1a. 4.2. Project network in Exzample 2.

is provided in Table 4.1. We consider five different deadline times 7. First, we
compute the worst case expected tardiness with range, first, and second moment
information and compare it with the results reported in [5]. The results are provided
in Table 4.2. In light of Theorem 3.1, it is clear that in [5] a heuristic method is used to
calculate the bound. We next calculate the tight upper bound with additional third
moment information. It is noted from Table 4.2 that the bounds are considerably
tighter, especially for larger deadline dates T, indicating the value that additional
information has on these estimates. It is important to note that our semidefinite
programming formulation provides an easy way to incorporate third and higher order
moment information, whereas previous techniques could not handle this.

Ezxample 2. The second project is a larger one with 29 activities that are dis-
tributed over 14 paths. The activity-on-arc graph representation of the project is
provided in Figure 4.2 and the data are provided in Table 4.3. The deadline time T’
is varied from 45.10 to 85 approximately in steps of 10, and the worst case expected
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TABLE 4.3
Actiwvity duration data for Example 2.

Arc Range First mom. | Second mom. Arc Range First mom. | Second mom.
1 [6,00) 8.0 66.778 16 [3,00) 4.0 16.111
2 [14, 00) 17.0 298.0 17 [8, 00) 10.0 100.444
3 [14, 00) 17.0 298.0 18 [1,00) 2.0 4.111
4 [2,00) 4.0 17.0 19 [6,00) 8.0 65.0
5 [1,00) 2.0 4.444 20 [1,00) 2.0 4.111
6 [1,00) 2.0 4.111 21 [6,00) 8.0 65.0
7 [0.4, 00) 0.6 0.370 22 [1,00) 2.0 4.111
8 [0.4, 00) 0.6 0.370 23 [6,00) 8.0 66.778
9 [2, 00) 3.0 9.250 24 [1,00) 2.0 4.111
10 [2, 00) 3.0 9.250 25 [4, 00) 6.0 36.444
11 [3,00) 4.0 16.111 26 [1,00) 2.0 4.111
12 [3,00) 4.0 16.111 27 [0.1,00) 0.5 0.257
13 [3,00) 4.0 16.111 28 [2,00) 4.0 16.444
14 [3,00) 4.0 16.111 29 [1,00) 2.0 4.111
15 [2,00) 3.0 9.250

TABLE 4.4

Upper bounds on expected tardiness for Example 2.

Information Bound/ T 45.10 55 65 75 85
Range, first, second mom. | G*(T) reported in [5] | 6.77 | 2.51 | 1.72 | 1.04 | 0.73
Range, first, second mom. | G*(T) from eq. (4.2) 6.52 | 2.38 | 1.38 | 0.97 | 0.73

project tardiness is computed for these times. The computed values are provided in
Table 4.4 along with the values reported in [5]. Clearly these results indicate that the
semidefinite programming method provides a general tractable approach for comput-
ing the worst case expected tardiness under moment information.

5. Asymptotic performance. In this section, we study the properties of the
bounds asymptotically as the size of the problem increases to infinity. We make the
following assumptions:

(A) Each objective coefficient is a random variable with a common prespecified
distribution function F. For simplicity, we assume that F' is a continuous
distribution. No assumption of independence is made.

The complete knowledge of F' is an important one in this setting to obtain in-
teresting scaling results. Under this setting, the tight upper bound on the expected
optimal value of a 0-1 maximization problem is computed as
(51) Z;lax = Supy E9 [eraax(c)]
st. 0e€O(F,...F).

We restrict ourselves to a fairly general class of a 0-1 optimization problems that
satisfy the following two properties:

(B) All feasible solutions to problem (1.1) indexed by p € {1,..., P} have the

same cardinality. If we denote this common cardinality as K7, we have

Ky =li:i€ By Vp=1,...,P,

where |S| denotes the cardinality of set S.
(C) Every element of the ground set X is contained in the same number of feasible
solutions. If we denote this common value as K5, we have

Ky =|p:i€ B, Vi=1,...,n.
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TABLE 5.1
Parameters for three classical combinatorial optimization problems.

0-1 Optimization problem n K1 P Ko
N X N Linear assignment N2 N N! (N =1)!
N(N-1) N -1 NN—2 2NN—3

Traveling salesman on N node complete graph NN-1) N w (N —=2)!

Spanning tree on N node complete graph

Clearly K7 < n and Ko < P. In conjunction, these assumptions imply that
K, and K5 are related by

Klp = Kg’ﬂ,.

Three classical combinatorial problems that satisfy properties (b) and (c) are as
follows:

(a) Linear assignment problem: given a set {1,2,..., N} and an N x N objective
coefficient matrix [c;;], find a permutation ¢ of the set that optimizes the sum
N
2 i1 Cig(i)-

(b) Spanning tree problem on a complete graph: given a complete undirected
graph G(V, E) with N vertices and an N x N symmetric objective coefficient
matrix [c;;], find a spanning tree with the optimal sum of the edge coefficients.

(¢) Symmetric traveling salesman problem on a complete graph: given a complete
undirected graph G(V, E') with N vertices and an N x N symmetric objective
coefficient matrix [c;;], find a cyclic permutation ¢ of the set of N vertices
that optimizes vazl Cig(i)-

The parameters for these three problems are summarized in Table 5.1.

Remarks. (a) While the first two problems are solvable in polynomial time, the
traveling salesman problem is difficult to solve. All three problems, however, share
structural properties (B) and (C). The asymptotic results in this section in fact do
not depend on the complexity of the nominal optimization problem.

(b) An example of a problem that does not satisfy properties (B) and (C) is the
Steiner tree problem.

THEOREM 5.1. Under assumptions (A)—(C), the tight upper bound on the ex-
pected optimal objective value of a 0-1 maximization problem is

(5.2) Z: . = K\ Ep [c ’ ¢> Fl (1 - Kl)] ,
n

where F~1 is the inverse distribution function for F.
Proof. From the previous sections, we know that tight bound Z} .. on the ex-
pected value of a 0-1 maximization problem given marginal distribution F' is obtained

by solving formulation (3.1). Problem (5.1) can then be solved as

(53) Zrtlax = drggl" (Z:;lax(d) + ;EF [ci - dZ]Jr) .
Formulation (5.3) is a convex minimization problem in n variables. The Karush—
Kuhn—Tucker conditions provide the necessary and sufficient optimality conditions
for this problem. These conditions are

(i) Ap>0forallp=1,...,P,
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(d) > ZiEBP d; and A\, = 0 whenever Z* _ (d) > Zz’eBP d; for all p =

(iv) 1 =3 ,iep, Ap = F(d;) foralli =1,...,n.
We now generate a set of primal d; and dual variables A, that satisfy conditions
(1)—(iv).
Set the dual multipliers to A, = 1/P,p =1,..., P. Clearly this satisfies conditions
(i) and (ii). From (C), condition (iv) then reduces to
K,

L= =F(d) Vi=1..n

If F~1 denotes the inverse of the distribution function, then the primal variables are

set to
K
di:F‘l(l—Pz) Vi=1,...,n

or equivalently

K
di:F_l(l—l) Vi=1,...,n.
n

Assumption (B) implies that Z*  (d) = K1d, satisfying condition (iii). Thus we have
the optimal primal and dual variables to formulation (5.3). Substituting the optimal

value of d; into the objective function yields

K K\1"
Z¥. = K F~! <1 - 1) +nEp {c— F! (1 - 1)} :
n n

K K Ki\] K
K F! (1—1> + nEp |:C—F_1 (1— 1) ‘ c>F! (1— 1)} =1
n n n n

which reduces to the required result. ]
COROLLARY 5.2.  Under assumptions (A)—(C), the tight lower bound on the
expected optimal objective value of a 0-1 minimization problem is

< (5]

5.1. Applications. We evaluate the explicit expected optimal objective value
for a class of distributions next. Note that in the case Ki/n | 0 asn T oo, ¢ > 0,
and from (5.4), the asymptotic performance of Z; depends only on the distribution
function of the cost coefficient F'(c) as ¢ | 0. We thus focus on 0-1 minimization
problems with the assumption that the distribution function of the cost coefficients
F,, satisfies

(5.4) Zinin

= KlEF |:C

(5.5) Fo(e) = pac® asc] .
The density function f, is respectively assumed to satisfy
(5.6) falc) = paac®™ as c | 0.

Distributions of this type have been extensively studied in the asymptotic analysis
of combinatorial problems [1], [3]. Models with distributions that satisfy (5.5) include
the following;:
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(a) Uniformly distributed cost coefficients U|0, 1] with & = 1 and p, = 1;

(b) Euclidean model with F, defined as the distribution of the distances between
independently and uniformly distributed points in dimension «; here p,, rep-
resents the volume of a sphere of unit radius in dimension «; and

(¢) Independent model with the cost coefficients independently distributed with
distribution F'.

We generalize these models by allowing the cost coefficients to be dependent.

Under this distributional assumption we obtain the following result.

THEOREM 5.3. Under assumptions (A)—(C) with cost distribution satisfying
(5.5), the tight lower bound on the expected optimal objective value of a 0-1 min-
imization problem that satisfies K1 = ©(y/n) scales asymptotically to a (positive)
constant C,, as

. Z:‘;lin .
(5.7) ﬁ%(m%ww)@’

where the asymptotic constant C, depends on the nominal problem.
Proof. For cost coefficients with distribution function in (5.5), we obtain

i c 1/«
F ' (c) = <p> asc]O0.

The tight lower bound Z7; from Corollary 5.2 is then computed as

in

K 1/«
()]
Palt
(m5)"" ()"
=K /pa pacc®de / /pa paaca_ldc asn | oo.
0 0

Note that with K; = ©(,/n), the term (K;/pan)/* | 0 as n T co. Evaluating the
integrals explicitly, we obtain

1/«
(5.8) Zrin = ( “ ) K, (K1> as n T oo,

a+1 NPo,

*
Zmin ¢

= K Ef,

which brings us to the scaling result. 0

COROLLARY 5.4. The tight lower bound on the expected optimal objective value of
the linear assignment, spanning tree, and traveling salesman problem with the marginal
distribution satisfying (5.5) scales asymptotically to a (positive) constant C% as

. Z;:lin _ *
(5.9) $&(Nmmm>—%7

where the asymptotic constant C% depends on the nominal problem.

Proof. Using (5.8) and N = @(y/n) for the three combinatorial problems of
interest, we obtain the desired scaling result. ]

We evaluate this asymptotic behavior for three specific problems in more detail
next.
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TABLE 5.2
Asymptotic scaling constant for the linear assignment problem.

Parameter a | With independence: C'(’; Without independence: C}
2 0.7535 0.6667
3 0.8953 0.7500
4 0.9474 0.8000
5 0.9602 0.8333
6 0.9742 0.8571

Minimum cost linear assignment problem. (a) Uniform distribution. The
random minimum cost linear assignment problem has been extremely well studied
under the uniform distribution model on [0,1]. Under the additional assumption of
independence, Walkup [30] proved an upper bound of 3 on the expected objective
value. The first proven lower bound for this expected value was 1.368 [17]. These
bounds have respectively been strengthened to 1.94 in [7] and 1.51 in [24]. Aldous [1]
more recently proved a conjecture of Mezard and Parisi [22] that under this model
the expected optimal objective value approaches 72 /6 ~ 1.645 as the size approaches
0. In fact, this limiting value holds for any nonnegative continuous distribution such
that the density of independent costs is 1 at 0. All of the above results hold under
the strict assumption of independence.

Without this assumption, by setting o = 1, po = 1, K; = N, and n = N? in
(5.8), we obtain the tight lower bound as

(5.10) For the linear assignment problem, Z>. = 0.5 VN.

Thus, by dropping the assumption of independence, the lower bound for the linear
assignment problem becomes C} = 0.5.

(b) Power density. The linear assignment problem has been studied under the
assumption that the cost coefficients are distributed on [0, 1] with density ac®~! for
a > 1. Under the assumption of independence, Donath [9] showed that asymptotically
the expected optimal objective value is bounded as

Yk . E[Z;nn(c)] A [ X 1
oS NI ( Ne-n/a ) S Cal 75

for some constant C?. The values of this constant for small values of o are provided
by the same author.
By setting K1 = N and n = N? in (5.8), we obtain

. . Z:;nn . (0%
(5.11)  For the linear assignment problem, (N(a_l)/a) = (a—l—l) VN.

Clearly, the tight lower bound scales with respect to N(@~1/® under our model, too.
This is similar to the scaling behavior observed under the independent model. In
Table 5.2, we compare the constant C? reported from [9] with C* = a/(a + 1) for
five values of a.. As should be expected, C7 is smaller than C%.

For these two particular distributions it can be verified that our results for the
linear assignment problem hold for all N and are not just an asymptotic result. This
is in contrast to the independent distribution model.
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Minimum spanning tree and traveling salesman problems. (a) Uniform
distribution. The random minimum spanning tree problem on a complete graph has
been studied under the uniform distribution model. Under the additional assumption
of independence, Frieze [10] showed that the expected length of the minimum spanning
tree asymptotically converges to ¢(3) &~ 1.202.

Without making the assumption of independence on arc length distribution, we
obtain with Ky = N —1 and n = N(N — 1)/2 from (5.8):

1
;nnzl_ﬁ as N 1 oo.
As the size of the problem N approaches infinity, the tight lower bound clearly con-
verges to Cf = 1:

Z:;lin

(5.12) For the spanning tree problem, =1.

lim
N—o0
This value is surprisingly close to the expected optimal objective value under inde-
pendence. For the traveling salesman problem, we similarly obtain

1
Itlin:]‘—'_m aSNTOO

and the same asymptotic constant of 1,

(5.13) For the traveling salesman problem, Zr i = 1.

lim
N—o0
(b) Euclidean and independent model. For the independent model with distribu-
tion function satisfying (5.5), the expected optimal objective value of the spanning
tree asymptotically scales as [3]

ElZiw@]) _ 1 T+ 5-1)
N(a=1)/a _apl/az Ll\l/d+1

lim
N—o0
k=1
Using the same model but without assuming independence, we obtain the tight lower
bound for the spanning tree problem as

: Z:nin _ a —1/agl/a
(5:14) R (m—w) - <a+1> Pa "2

Under the Euclidean model we can set the value of p, = 7%2/T'(d/2+1). The
values of the limiting constants are provided in Table 5.3. Interestingly, the traveling
salesman problem exhibits the same asymptotic scaling constant but the rates of
convergence are different.

5.2. Limited marginal information. The previous section showed that with-
out the assumption of independence, the asymptotic performance for a general class
of combinatorial optimization problems exhibits interesting behavior under the model
of completely known marginal distributions. We now show that under the marginal
moment model such problems in fact may exhibit a different kind of scaling behavior.

Consider probabilistic combinatorial optimization problems that satisfy assump-
tions (B) and (C), and the following:

(A’) Each objective coeflicient is a random variable with common first and second
moments p and u? 4 o2.
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TABLE 5.3
Asymptotic scaling constant for the spanning tree problem.

Parameter a | With independence: C‘; Without independence: C}
2 0.5684 0.5319
3 0.6094 0.5862
4 0.6558 0.6383
5 0.7010 0.6867
6 0.7440 0.7317

(D) The ground set can be partitioned into disjoint collection of feasible solutions,
i.e., there is a set {0,..., P — 1} such that

X:Up:07'..7]§,_1Bp, B; N B; =0 Vi#44,j=0,...,P—1.

Note that we change the indexing of the feasible solutions here slightly for
ease of developing the result.

Assumption (D) is valid for a wide variety of combinatorial optimization prob-
lem. For instance, for the assignment problem, (D) follows from the well-known fact
that the edges of a complete bipartite graph Ky« can be partitioned into a collec-
tion of N disjoint perfect matching. For the spanning tree and traveling salesman
problems, assumption (D) is obtained for an even and an odd number of vertices N,
respectively.

Under these assumptions, we show that the tight lower bound Z%; = 0 for these
problems. To see this, we construct an instance of the problem, and a correspond-
ing distribution satisfying all the conditions, such that the expected minimum cost
solution is zero.

Let {Bo, B1,...,Bp_,} be the feasible solutions stipulated by assumption (D).

We define
2 ~
m = (ﬂ) P,
MZ +O’2
Sy =Utmp, k=0,...,P -1,

where the addition is taken modulo P. Consider the cost function ¢, with

2 2

k (W> if i € S,
C; = J7

0 otherwise.

Note that for a particular objective function ¢, since there is a feasible solution

By, 1 ¢ Sk, with zero optimal objective value, c(B;) = 0. Construct a probability
distribution with ¢ = ¢; with probability 1/P. For this distribution it can be verified
that the first two moments are

2 2
Bl =2 (ST ) —p =,
1

2 2\ 2
E[c2]TiL<M+U> :M2+02a 1=1,...,n.
7

Furthermore, for each realization of ¢, the optimum solution value is 0, so we have
.o =0.

min



208 D. BERTSIMAS, K. NATARAJAN, AND C.-P. TEO

6. Conclusions and extensions. In this paper, we addressed the problem of
computing tight bounds on the expected value of a 0-1 optimization problem un-
der uncertainty in the objective coefficients. The feasible multivariate distributions
were characterized by known moment information on the marginal distributions of
the objective coefficients. We showed that given moment information on piecewise
polynomial functions of the objective coeflicients, the tight upper (lower) bound on
the expected optimal objective value of the 0-1 maximization (minimization) problem
can be computed in polynomial time if the deterministic problem is solvable in poly-
nomial time. We provided an efficiently solvable semidefinite program to compute this
tight bound. Under an extension of this model with completely known and identical
marginal distributions we analyzed the asymptotic bounds for a class of combinatorial
problems.
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