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Abstract

This paper presents two results about preference domain conditions that deepen our understand-
ing of anonymous and monotonic Arrovian social welfare functions (ASWFs). We characterize the
class of anonymous and monotonic ASWFs on domains without Condorcet triples. This extends and
generalizes an earlier characterization (as Generalized Majority Rules) by Moulin (Axioms of Coop-
erative Decision Making, Cambridge University Press, New York, 1988) for single-peaked domains.
We also describe a domain where anonymous and monotonic ASWFs exist only when there are an
odd number of agents. This is a counter-example to a claim by Muller (Int. Econ. Rev. 23 (1982)
609), who asserted that the existence of 3-person anonymous and monotonic ASWFs guaranteed the
existence of n-person anonymous and monotonic ASWFs for any n > 3. Both results build upon the
integer programming approach to the study of ASWFs introduced in Sethuraman et al. (Math. Oper.
Res. 28 (2003) 309).
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1. Introduction

Perhaps the most popular answer to the question of what is the most democratic way to
aggregate preferences is the simple majority rule. If all voters agree that some alternative x is
preferred to another alternative y, then the majority rule will return this ranking (unanimity).
An increase in the support for x over y can never disadvantage x (monotonicity). The majority
rule does not respect the labels given to alternatives (neutrality). It does not respect the names
of voters; the preferences of a bandit receive as much consideration as that of a benedictine
(anonymous).

However, as is well known, there are profiles of orderings on which the majority rule
‘cycles’. In fact, as we know from Arrow [1], aggregation procedures that return a strict
ordering satisfying much weaker conditions than majority rule, do not exist, unless one
places restrictions on the class of preferences being considered. Nevertheless, one can still
ask: on preference domains where coherent aggregation procedures exist, what form do
they take? So as to continue the discussion it will be useful to introduce some notation.

Let A denote a finite set of (at least three) alternatives. Let � denote the set of all strict
preference orderings over A. The set of admissible preference orderings for members of
a society of n agents will be a subset of � and denoted �. Let �n be the set of all n-
tuples of preferences from �, called profiles. An element of �n will typically be denoted
as P = (p1, p2, . . . , pn), where pi is interpreted as the preference ordering of agent i. In
the language of Le Breton and Weymark [7], we assume the common preference domain
framework. An n-person Social Welfare Function is a function F : �n → �. Thus for any
P ∈ �n, F(P) is an ordering of the alternatives. We write xF(P)y if x is ranked above y
under F(P). An n-person Arrovian Social Welfare Function (ASWF) on � is a function
F : �n → � that satisfies the following two conditions:

1. Unanimity: If for P ∈ �n and some x, y ∈ A we have xpiy for all i then xF(P)y.
2. Independence of Irrelevant Alternatives: For any x, y ∈ A suppose ∃P, Q ∈ �n such

that xpiy if and only if xqiy for i = 1, . . . , n. Then xF(P)y if and only if xF(Q)y.

The first axiom stipulates that if all agents prefer alternative x to alternative y, then the
social welfare function F must rank x above y. The second axiom states that the ranking of
x and y in F is not affected by how the agents rank the other alternatives.

An obvious ASWF is the dictatorial rule: rank the alternatives in the order of the prefer-
ences of a particular agent (the dictator). An ASWF is dictatorial if there is an i such that
F(P) = pi for all P ∈ �n. An ordered pair of alternatives (x, y) is called trivial if xpy for
all p ∈ �. In view of unanimity, any ASWF must have xF(P)y for all P ∈ �n whenever
(x, y) is a trivial pair. If � consists only of trivial pairs then distinguishing between dicta-
torial and non-dictatorial ASWFs becomes nonsensical, so we assume that � contains at
least one non-trivial pair. The domain � is Arrovian if it admits a non-dictatorial ASWF.
When � = �, Arrow [1] proved that the only ASWFs are the dictatorial functions. This
conclusion has inspired a huge literature devoted to identifying Arrovian domains (see, for
example, the monograph [5]).

Not only will an Arrovian domain admit a non-dictatorial ASWF, it may admit many
different kinds of them. Thus one may wish to impose additional restrictions to whittle
down the number of choices. Maskin [8], for example, shows that if a domain admits an
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ASWF that is neutral and anonymous, then the majority rule is an ASWF on that domain. In
some cases one can make a stronger claim: every ASWF satisfying anonymity and neutrality
can be represented as a kind of majority rule (see for example Moulin [9]). Results of this
nature have been used to explain or support the importance of the majority rule.

While there is little objection to the first two properties of the majority rule listed above,
it is not clear the other two (neutrality and anonymity) are essential for a ‘democratic’
aggregation procedure. One can point to institutions that are said to exemplify democratic
principles that use aggregation procedures that violate both of these properties. Within
the General Assembly of the U.N., procedural matters are decided by a simple majority
but substantive matters by a two-thirds majority; a violation of neutrality. In the Security
Council, only five particular nations have a veto; a violation of anonymity. 1 For this reason
it is interesting to obtain analogs of Maskin’s [8] theorem for ASWFs that satisfy either
neutrality or anonymity but not both.

In Sethuraman et al. [15] we show that if a domain admits a neutral ASWF then either the
majority rule or the born loser rule 2 is an ASWF on that domain. In this paper we investigate
the case of ASWFs that satisfy anonymity but not neutrality. A precise description of our
results appears in the next section.

2. The results

The axioms defining an ASWF do not preclude a small number of agents from essen-
tially dictating the final outcome. Moreover, additional support in favor of an alternative
over another does not necessarily improve the relative ranking of the initial alternative.
One can eliminate these two possibilities by requiring that the ASWFs be anonymous and
monotonic.

• An ASWF F is anonymous if its ranking over pairs of alternatives remains unchanged
when the labels of the agents are permuted. Observe that a dictatorial rule is not anony-
mous.

• An ASWF F is monotonic if for all x, y ∈ A, and all subsets of agents S, if xpiy for all
agents i ∈ S implies xF(P)y, then xp′

iy for all agents i ∈ S′ ⊃ S implies xF(p′)y. In
other words, if x is socially preferred to y, then if additional agents change their relative
x, y preferences in favor of x, x remains socially preferred to y.

It is well known (cf. [14]) that any domain that excludes a Condorcet triple admits an
anonymous, monotonic ASWF (AMASWF). The majority rule, 3 which is anonymous
and monotonic, is an SWF on such domains. Is it the only such rule? Moulin [10, Theo-
rem 11.6, pp. 303–305], generalizing his earlier work [9], provided an answer when the

1 Readers who look upon the U.N. with a jaundiced eye, need only turn to the U.S. Houses of Congress for
similar examples.

2 This is a modification of the anti-dictator rule that satisfies unanimity.
3 For an even number of agents, the majority rule is not well-defined since we require the output of the ASWF

to be a strict preference order; we can overcome this by introducing a dummy agent with a fixed preference p ∈ �,
and applying the majority rule.
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preference domain consists of all single-peaked preference orderings with respect to a given
linear order. Moulin proved that every AMASWF on this domain can be represented as a
generalized majority rule (GMR). A GMR M for n agents is of the following form:

• Add n − 1 dummy agents, each with a fixed preference ordering drawn from �.
• x is ranked above y under M if and only if the majority (of real and dummy agents)

prefer x to y.

Each instance of a GMR can be described algebraically as follows. Fix a profile R ∈ �n−1

and let m(x, y) be the number of orderings in R where x is ranked above y. Given any profile
P ∈ �n, GMR ranks x above y if the number of agents who rank x above y under P is at
least n − m(x, y).

Our first contribution is to generalize Moulin’s theorem to preference domains that do
not contain any Condorcet triples (of which the single peaked domain is a special case).
Specifically, we show that if the domain contains a preference q and its inversion q−1

(obtained by inverting the ordering of the alternatives in q), then every AMASWF on
this domain is a GMR. Furthermore, we show that these requirements are necessary by
exhibiting a domain violating these requirements and an AMASWF on that domain that
cannot be expressed as a GMR.

Our second contribution is motivated by a desire to prove an analog of the theorem of
Kalai and Muller [6] for AMASWFs. They showed that the existence of a non-dictatorial
ASWF does not depend on the number of agents; in other words, a domain � admits an
n-person non-dictatorial ASWF if and only if it admits a 2-person non-dictatorial ASWF.
While this result reduces the problem of verifying whether a domain is Arrovian or not to
examining 2-person SWFs, it does not characterize Arrovian domains.

In our case, does the existence of a 2-person (or k-person, for any fixed k) AMASWF
guarantee the existence of such ASWFs for all n�k? Muller [11] observed that the existence
of a 2-person AMASWF does not guarantee the existence of an n-person AMASWF for all
n > 2. However, Muller [11, Theorem 2, p. 617] claimed the following:

Claim 1. There exists an n-person AMASWF on � for every n > 3 iff � admits a 3-person
AMASWF.

The claim, if true, implies that the existence of an AMASWF depends only on the domain
and not the number of agents.

We show that the claim is false. In fact, we prove more: We show that there is no odd
number k�3 such that the existence of a k-person AMASWF will guarantee the existence
of an n-person AMASWF for all n > k. Thus, the existence of an AMASWF must depend
not only on the domain �, but also on n, the number of agents.

On the positive side we show that the existence of 2 and 3-person AMASWFs on a
domain � satisfying some additional conditions is sufficient to guarantee the existence of
an n-person AMASWF for all n�3.

All of these results are obtained using insights from an integer program that characterizes
the class of n-person ASWFs. This integer program was first introduced in Sethuraman et
al. [15]. In the next section we describe this integer program as specialized to the case of
AMASWFs. In the subsequent section we describe the generalization of Moulin’s result.
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The penultimate section of the paper exhibits the counterexample to Muller’s claim. We
conclude with some open problems.

While we restrict attention to the case of strict preferences, we conjecture, by analogy
with previous results in the literature, that the results here would hold when indifferences are
permitted. In support of this conjecture, we explicitly show that one of our main results—the
existence of an anonymous, monotonic social welfare function depends on both the domain
� and the number of voters n—continues to hold, even if social indifference is permitted.

3. An integer programming description

Denote the set of all ordered pairs of alternatives by A2. Let E denote the set of all agents,
and Sc denote E \ S for any S ⊆ E. The independence of irrelevant alternatives condition
allows us to specify an ASWF in terms of which ordered pair of alternatives a given subset,
S, of agents is decisive over.

Definition 1. For a given ASWF F , a subset S of agents is weakly decisive for x over y if
whenever all agents in S rank x over y and all agents in Sc rank y over x, the ASWF F ranks
x over y.

Since this is the only notion of decisiveness used in the paper, we omit the qualifier
‘weak’ in what follows. For each non-trivial element (x, y) ∈ A2, we define a 0–1 variable
as follows:

dS(x, y) =
{

1 if the subset S of agents is decisive for x over y;
0 otherwise.

If (x, y) ∈ A2 is a trivial pair then by default we set dS(x, y) = 1 for all S �= ∅. Given
an ASWF F , we can determine the associated d variables as follows: for each S ⊆ E, and
each non-trivial pair (x, y), pick a P ∈ �n in which agents in S rank x over y, and agents in
Sc rank y over x; if xF(P)y, set dS(x, y) = 1, else set dS(x, y) = 0. Anonymity requires
that dS(x, y) = dT (x, y) whenever |S| = |T |. For this reason we write dr(x, y) in place of
dS(x, y) whenever |S| = r . By definition, an ASWF satisfies unanimity and independence
of irrelevant alternatives; moreover, its outcome on any given profile is a transitive ordering
of the alternatives. We now express these properties in terms of the associated d variables.

Unanimity: To ensure unanimity, for all (x, y) ∈ A2, we must have

dn(x, y) = 1. (1)

Independence of irrelevant alternatives: Consider a pair of alternatives (x, y) ∈ A2, a
P ∈ �n, and let S be the set of agents who prefer x to y in P. (Thus, each agent in Sc prefers
y to x in P.) Suppose xF(P)y. Let Q be any other profile such that all agents in S rank
x over y and all agents in Sc rank y over x. By the independence of irrelevant alternatives
condition xF(Q)y. Hence the set S is decisive for x over y. However, had yF(P)x a similar
argument would imply that Sc is decisive for y over x. Thus, for all 1�r �n and non-trivial
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Fig. 1. The sets and the associated orderings.

(x, y) ∈ A2, we must have

dr(x, y) + dn−r (y, x) = 1. (2)

A consequence of Eqs. (1) and (2) is that d0(x, y) = 0 for all (x, y) ∈ A2.
Transitivity: The next class of constraints ensure transitivity. Let A, B, C, U, V , and W

be (possibly empty) disjoint sets of agents whose union includes all agents. Denote their
cardinalities by |A|, |B|, |C|, |U |, |V | and |W |, respectively. For each such partition of the
agents, and any triple x, y, z,

d|A|+|U |+|V |(x, y) + d|B|+|U |+|W |(y, z) + d|C|+|V |+|W |(z, x)�2, (3)

where the sets satisfy the following conditions (see Fig. 1):

|A| �= 0 only if there exists p ∈ �, xpzpy,

|B| �= 0 only if there exists p ∈ �, ypxpz,

|C| �= 0 only if there exists p ∈ �, zpypx,

|U | �= 0 only if there exists p ∈ �, xpypz,

|V | �= 0 only if there exists p ∈ �, zpxpy,

|W | �= 0 only if there exists p ∈ �, ypzpx.

These constraints ensure that on any profile P ∈ �n, the ASWF F does not produce a
ranking that “cycles.” A consequence of (2) and (3) that is useful:

d|A|+|U |+|V |(x, y) + d|B|+|U |+|W |(y, z) + d|C|+|V |+|W |(z, x)�1.

To deduce it, interchange the roles of z and x in (3). Then the roles of A and V (resp. B and
W, C and U) can be interchanged to obtain the new inequality:

d|A|+|C|+|V |(z, y) + d|B|+|C|+|W |(y, x) + d|U |+|A|+|B|(x, z)�2.
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Using (2), we obtain

d|B|+|U |+|W |(y, z) + d|A|+|U |+|V |(x, y) + d|C|+|V |+|W |(z, x)�1.

Monotonicity:

dr(x, y)�ds(x, y) ∀r �s, ∀(x, y) ∈ A2. (4)

Constraints (1)–(4) are both necessary and sufficient to characterize alln-person AMASWFs.
One consequence of (3) which we invoke repeatedly in the rest of the paper is the following:
Suppose there are p, q ∈ � and three alternatives x, y and z such that xpypz and yqzqx.
Then

dr(x, y)�dr(x, z), (5)

dr(z, x)�dr(y, x). (6)

The first inequality follows from using a profile P in which r agents rank x over y over z and
|E| − r agents rank y over z over x. If dr(x, y) = 1 then xF(P)y. By unanimity, yF(P)z.
By transitivity, xF(P)z. Hence dr(x, z) = 1; the second inequality can be proved similarly.
Another consequence, which follows from transitivity, is: Suppose we know only that there
is a p ∈ � with xpypz. Then

dr(x, y) + dr(y, z) � 1 + dr(x, z), (7)

dr(z, y) + dr(y, x) � dr(z, x). (8)

We omit the easy proof.

4. Domains without Condorcet triples

Throughout this section, we assume that � is a domain without Condorcet triples. In this
case, it is well known that the majority rule, with a tie-breaking preference order in the case of
an even number of agents, is an AMASWF on �. Here we are interested in characterizing
AMASWFs on such domains. We show that all such functions are essentially “majority
rules.” For subsequent discussion, we need to introduce some terms. A linear extension of
a partially ordered set (poset) P is a linear (total) order L with a <P b implying a <L b

for all a, b in the poset. Every poset P can be obtained as the intersection of its linear
extensions (cf. [4]). The minimum number of extensions defining P is called the dimension
of P. Let F be an AMASWF on �, and d be the associated decisiveness variables. (For
convenience, we often refer to an SWF F in terms of its associated decisiveness variables
d.) Let Dr [d] = {(x, y) ∈ A2 : dr(x, y) = 1}. When there is no ambiguity we suppress
the dependence on d and write Dr instead of Dr [d]. We can think of each Dr [d] as being
the arc set of a directed graph. We start with a key lemma on the structure of decisive sets
of any AMASWF on �.

Lemma 1. If � is a domain without any Condorcet triples and d an anonymous, monotonic
ASWF, then Dr is transitive for any r ��n/2�. Moreover, for any pair of alternatives x, y,
Dr does not contain both (x, y) and (y, x).
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Proof. Fix an r �n/2, and suppose (x, y), (y, z) ∈ Dr . We show that (x, z) ∈ Dr , i.e. Dr is
transitive. We may assume that at least one preference order in � ranks z above x, otherwise
there is nothing to prove. If there is a preference with x above y above z in �, then we can
invoke (7) to argue that (x, z) ∈ Dr . Suppose otherwise. Consider the preference domain
� restricted to the three alternatives x, y, and z; we abuse notation and refer to this restricted
preference domain by �. Let p and q be preference orders such that zpxpy and yqzqx. We
complete the proof by considering all possible cases:

• p, q ∈ �: Consider the profile in which r agents rank p and (n − r) agents rank q. The
given SWF F produces a cycle; so this case cannot occur.

• p, q /∈ �: There must be some preference order in which x is ranked above y, because
dr(x, y) = 1. Similarly, there must be some preference order in which y is ranked above
z. By assumption, � does not contain the preference order xyz. So � must contain the
preference orders xzy and yxz. Note that both of these rank x above z. If � contains also
zyx, then these preference orders form a Condorcet cycle. So this case cannot occur.

• p ∈ �, q /∈ �: We know that � does not contain the orders {xyz, yzx}. But � must
contain a preference order with y ranked above z, otherwise (z, y) will be a trivial pair;
so � must contain the preference order yxz. Consider the profile with r agents ranking
yxz and (n − r) agents ranking zxy. The given SWF F ranks x above y and y above z in
this profile, hence x is ranked above z. This profile has exactly r agents ranking x above
z. Hence dr(x, z) = 1. The case with q ∈ � but not p can be treated in the same way.

Thus, we have proved that Dr is transitive. Suppose (x, y) ∈ Dr ; then by (2), (y, x) /∈
Dn−r , which, by monotonicity, implies (y, x) /∈ Dr . Thus, Dr cannot contain both (x, y)

and (y, x) for a pair of alternatives x, y. �

The question of characterizing all social welfare functions satisfying certain properties
on a given preference domain is a natural one. In particular, Moulin [10, Theorem 11.6,
pp. 303–305] provided an elegant characterization for single-peaked domains, which are
a subclass of the domains without Condorcet triples. Specifically, he showed that every
AMASWF on a (complete) single-peaked domain is a generalized majority rule. Our main
contribution is to formulate an appropriate generalization of Moulin’s theorem to preference
domains that do not contain any Condorcet triples. We first show that if the domain �
contains a preference ordering q and its inversion q−1 (obtained by inverting the ordering
of the alternatives in q), then every AMASWF on this domain is a GMR.

Theorem 1. Let � be a domain with no Condorcet triples that contains an ordering q and
its inversion q−1, for some q ∈ �. Then any n-person AMASWF on � can be represented
as a generalized majority rule.

Proof. Without loss of generality, suppose x1qx2q . . . qxN , where N is the total number
of alternatives. Note that xN q−1xN−1q−1 . . . q−1x1. Fix an AMASWF d on �; Lemma 1
implies Dr [d] is a partial order for all r ��n/2�. Let Gr be the (undirected) graph of the
partial order corresponding to Dr , and let Gc

r denote its complement. Our goal is to show
that both Gr and Gc

r have transitive orientations. That Gr has a transitive orientation is clear
(orient the edge {xi, xj } of Gr from xi to xj if and only if (xi, xj ) ∈ Dr ). For the graph Gc

r ,
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construct a new directed graph D(Gc
r) by orienting the edge {xi, xj } of Gc

r from xi to xj

if and only if i < j . We show that D(Gc
r) is transitive. Consider the directed arcs (xi, xj )

and (xj , xk) in D(Gc
r). By definition,

• i < j < k; and
• (xi, xj ) /∈ Dr , (xj , xk) /∈ Dr , (xj , xi) /∈ Dr , and (xk, xj ) /∈ Dr .

By (8), and the existence of q and q−1, we have

dr(xi, xk) = 0, dr (xk, xi) = 0.

Hence (xi, xk) ∈ D(Gc
r), which implies that the graph D(Gc

r) is transitive. Since the graph
Gr and its complement Gc

r have transitive orientations, it follows from Dushnik and Miller
[4] that the partial order corresponding to Dr has dimension 2. We show this explicitly by
constructing two linear extensions of Dr whose intersection determines Dr . Consider the
two (directed) graphs T r

1 ≡ Dr ∪ D(Gc
r)), and T r

2 ≡ Dr ∪ D−1(Gc
r), where D−1(Gc

r) is
the transitive directed graph obtained by inverting the orientation of all the arcs in D(Gc

r).
Since Dr and D(Gc

r) are transitive graphs, and their union forms a complete directed graph,
T r

1 is a complete transitive graph. Let pr
1 be the (linear) ordering induced by T r

1 . Similarly,
let pr

2 be the (linear) ordering induced by T r
2 . Note that pr

1 and pr
2 agree on the ordering of

the arcs in Dr , and disagree on all the arcs not in Dr . To get a GMR, we use n − 1 dummy
agents. For odd n, we use the profiles

{pr
1, pr

2}(n−1)/2
r=1 .

For even n, we use the profiles

{pr
1, pr

2}n/2−1
r=1 ,

which specifies the preferences of all but one of the dummy agents; the preference of the
last dummy agent is simply the transitive order induced by Dn/2. Note that Dn/2 must be
a complete transitive graph: transitivity follows from Lemma 1 and completeness follows
from an application of Eq. (2). We show that the GMR with the specified preferences of
the dummy agents is equivalent to the AMASWF d we started with. Consider any pair of
alternatives x, y, and suppose r is the smallest number such that dr(x, y) = 1. It is enough
to show that r (or more) real agents rank x above y if and only if a majority of the real and
dummy agents rank x above y. Since there are (n − 1) dummy agents, this is equivalent to
showing that exactly (n − r) dummy agents rank x above y.

n is odd: If r < n/2, then, for k = 1, 2, . . . , r − 1, exactly one dummy agent ranks x
above y, and for k = r, r + 1, . . . , (n − 1)/2, both dummy agents rank x above y. Thus, the
number of dummy agents ranking x above y is

(r − 1) + 2 ×
(

n − 1

2
− r + 1

)
= n − r,

as required. If r > n/2, then, let r ′ = n−r +1; it is clear that r ′ is the smallest number such
that dr ′(y, x) = 1. If r ′ < n/2, by the argument just made, exactly (n− r ′) = r −1 dummy
agents rank y above x; since there are totally (n−1) dummy agents, exactly (n− r) dummy
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agents rank x above y, as required. The only remaining possibility is for both r, r ′ > n/2.
This is possible if and only if r = r ′ = (n+1)/2; this simply means the voting rule is really
a simple majority rule on the pair {x, y}. In this case, exactly half the dummy agents rank
x above y; but (n − r) = (n − 1)/2, which is exactly half the number of dummy agents; so
the number of dummy agents ranking x above y is exactly (n − r).

n is even: If r �n/2, then, for k = 1, 2, . . . , r − 1, exactly one dummy agent ranks x
above y, and for k = r, r + 1, . . . , n/2 − 1, both dummy agents rank x above y; finally, the
lone dummy agent with a preference order consistent with Dn/2 ranks x above y. Thus, the
number of dummy agents ranking x above y is (r − 1) + 2 × (n/2 − r) + 1 = n − r, as
required. If r > n/2, then, let r ′ = n − r + 1; it is clear that r ′ �n/2, and it is the smallest
number such that dr ′(y, x) = 1. By the argument just made, exactly (n − r ′) = r − 1
dummy agents rank y above x; since there are totally (n−1) dummy agents, exactly (n− r)

dummy agents rank x above y, as required. �

The remainder of this section is devoted to two issues. First, we discuss examples of
“natural” domains that meet the conditions of Theorem 1. Second, we discuss the effect of
relaxing the various assumptions of the theorem.

4.1. Domains meeting the assumptions of Theorem 1

The set of all single-peaked preferences or single-dipped preferences with respect to a
linear order q satisfy the assumptions of Theorem 1: they contain no Condorcet triples,
and they contain both q and q−1. We describe next domains that naturally generalize these
properties. Suppose the alternatives can be represented by pairs of real numbers

{(a1, b1), (a2, b2), . . . , (aN , bN)},
with a1 < a2 · · · < aN and b1 > b2 > · · · > bN . Each agent is represented by a non-
negative pair of real numbers (�i , �i ). Agent i has a “utility” of �iaj +�ibj for alternative j,
and the agents’ preferences are determined by their utilities. Hence agent i prefers alternative
j to k if

�iaj + �ibj > �iak + �ibk.

Since we assume all preferences are strict, we break ties using a pre-determined priority
ordering. See Fig. 2 for an illustration. The above contains single peaked and single dipped
domains as special cases. Consider the piecewise linear graph obtained by connecting the
alternatives using straight-line segments. If this graph is convex, the domain is single-dipped;
and if this graph is concave, the domain is single-peaked. It is clear that this preference
domain has no Condorcet triples, and contains a ranking q and its inversion q−1. By Theorem
1, the only AMASWFs in this domain are GMRs. Another example satisfying the domain
condition is the class of “order-restricted” preferences, first considered by Rothstein [13].
This is a restriction on profiles, not individual preferences; moreover, it is defined with
respect to an ordering of the individuals, not alternatives. (We adapt the standard definition
to the case of strict preferences.) A profile P ∈ �n is order-restricted if and only if there is
an ordering � of the n agents such that, for all distinct pair of alternatives (x, y), the first
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Fig. 2. Agent i prefers alternative 4 to 2 to 3 to 1; Agent j prefers alternative 1 to 2 to 4 to 3.

j (x, y) agents strictly prefer x to y, and the remaining agents strictly prefer y to x. Note
that the ordering, �, of the agents cannot depend on the pair of alternatives (x, y), but the
function j (·) can. It is well known that the class of order-restricted preferences and the class
of single-peaked preferences intersect each other, but neither one of them contains the other,
see [2]. Importantly a profile that is order restricted does not contain a Condorcet triple.
One domain that produces profiles that are order restricted can be described as follows. Let
t , a real number, be a type and the utility that an agent with type t assigns to alternative x
is u(x|t). Now alternative x is ranked above y by an agent with type t if u(x|t) > u(y|t).
Thus each type induces a preference ordering over the alternatives. We can thus associate
a preference domain with a set of types. If u(x|t) − u(y|t) is increasing in t, then every
profile of types induces a profile of orderings that is order restricted. If the domain of types
is ‘rich’ enough, the domain will contain an ordering q and its inverse. One such example
is in [2, Chapter 4, Section 6].

4.2. Relaxing the assumptions of Theorem 1

The requirement that � contains at least one ordering and its inversion is crucial as the
next example shows.

Example 1. Let A = {a, b, c, d, e, f } and

�′ = {abcdef, dbcaf e, eacbf d, f baced}.
Notice that �′ does not contain any Condorcet triples or the inversion of any of its orderings.
Consider the 3-person ASWF, defined by

D1 = {(a, e), (a, f ), (b, d), (b, f ), (c, d), (c, f )},
D2 = A2 \ {(e, a), (f, a), (d, b), (f, b), (d, c), (f, c)}.
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Fig. 3. The sets D1 and D2 represented as directed graphs.

See Fig. 3 for an illustration of D1 and D2. The rule implied by D1 and D2 is clearly
anonymous and monotonic. We show that it is an SWF. If not, the rule should cycle on
some three person profile on some triple of alternatives. We rule out this possibility by
considering every triple of alternatives.

• Consider the triple {a, b, c}. Observe that these three items are ordered according to
majority rule. Since �′ has no Condorcet triples, the rule will not ‘cycle’ on this triple.
A similar argument applies to the triple {d, e, f }.

• Consider the triple {a, e, f }. For the rule to cycle on this triple, we need all the 3 agents to
rank e above a, or all 3 persons to rank f above a. However, since there is only one ordering
in �′ which ranks e above a (and only one which ranks f above a), we conclude that all
3 persons must submit the same preference orderings. Since they are unanimous, the
rule will not cycle. The same argument applies to the triples {b, d, f }, {c, d, e}, {b, c, d},
{a, c, e} and {a, b, f }.

• Consider the triple {a, b, d}. For the rule to cycle on this triple, we only need to consider
the case where b is ranked above d, d above a and a above b under our rule. The other
cycle (in opposite orientation) has already been ruled out by the previous case, since it
needs all 3 agents to rank d above b. In this case, we need at least two agents to rank d
above a, and at least 2 agents to rank a above b. However, since there is no p in �′ with
dpapb, and there are only three agents, we do not have enough agents to enforce this
cycle. This argument applies to all the remaining triples not considered so far.

Notice that the poset corresponding to D1 is an instance of a 3-crown, which is the smallest
poset with dimension 3 (see [16]). Thus the 3-crown poset cannot be expressed as an inter-
section of two linear orders that extend it. We conclude that the SWF cannot be represented
by a GMR.
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Remark. We pause to comment on the relationship of Theorem 1 to Moulin’s character-
ization [10] and an earlier extension of that result due to the authors [15, Theorem 12].
Moulin’s original result considered the domain consisting of all single-peaked preference
orderings with respect to a given linear order q. This domain has no Condorcet triples,
and contains both q and q−1, and so, Theorem 1 could be viewed as a direct generaliza-
tion of this result. Our earlier result [15, Theorem 12] extended Moulin’s characterization
to domains consisting of some (not necessarily all) single-peaked preference orderings
with respect to a given linear order q. Finally, we note that Theorem 1 and our earlier
result [15, Theorem 12] are not comparable. The domain {abc, cba, acb} satisfies the hy-
pothesis of Theorem 1, but cannot be a part of any single-peaked domain. The domain
{abc, bca} is a (subdomain of a) single-peaked domain, but violates the hypothesis of
Theorem 1.

Suppose � is free of Condorcet triples, but also does not contain a pair q, q−1. Example
1 shows that in this case there are AMASWFs that are not representable as generalized
majority rules. From Lemma 1, however, we see that every AMASWF on such a domain
could be viewed as a block majority rule. For n odd, there will be (n − 1)/2 blocks of
dummy agents, with each block containing at least two dummy agents. For each pair of
alternatives x, y, whenever all of the dummy agents within a block rank x above y, that
block contributes 2 votes for x over y, otherwise it contributes 0. Every real agent ranking x
above y contributes 1 for x over y. Let m(x, y) be the number of votes for x over y. Then, x
is ranked above y socially iff m(x, y) > m(y, x). Clearly, the GMR is obtained as a special
case when each block has exactly two dummy agents. In this case, by definition, if both
dummy agents in a block rank x above y, the block contributes 2 to m(x, y), otherwise it
contributes 1 each to m(x, y) and m(y, x), which can be treated as a zero contribution to
both m(x, y) and m(y, x). We conclude by noting that the assumption regarding the absence
of Condorcet triples cannot be weakened. Consider the following example due to Muller
[11].

Example 2. Let A = {x, y, z, w} and � = {yzxw, zxyw, xwyz, ywzx, xyzw, zwxy}.
Consider the following 5-person ASWF, defined by D1 = ∅,

D2 = D3 = {(x, w), (x, z), (y, w), (y, x), (z, y), (z, w)}
and D4 = A2. It is straightforward (but tedious) to verify that this is an AMASWF. However,
D2 has a cycle involving {x, y, z}, and so this rule cannot be represented as a block majority
rule.

5. General domains and a counterexample

In this section we show that, in general, the existence of an AMASWF depends not just
on the domain condition, but also on the number of agents involved. To this end, we first
construct a counterexample to Claim 1. We identify a domain � that admits a 3-person
AMASWF, but does not admit a 2-person AMASWF. As any 2k-person AMASWF can be
used to obtain a 2-person solution, � cannot admit an AMASWF for any even number of
agents; thus, this domain serves as a counterexample to Claim 1. Before proceeding further
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with the example, it is instructive to examine why Muller’s proof of Claim 1 is incorrect.
Muller’s proof of Claim 1 relied on the following lemma [11, Lemma 1], re-written in our
terminology.

Lemma 2. Suppose � permits construction of a monotonic SWF. Let S be a non-empty
subset of the set of all pairs of alternatives. Suppose A1, A2, A3 is a partition of the agents
such that each Ai is decisive over S, then S is a transitive sink. In particular, S contains
exactly half the pairs.

We have not defined what a “sink” is, but this is not important for our purposes. Muller’s
proof of Claim 1 fails because Lemma 2 is false (see also Example 3 described below).
The flaw in Muller’s [11, p. 619] proof of Lemma 2 is his (false) claim that if a coalition is
decisive over S, then its complement is decisive over the inverse complement

S∗ = {(a, b)|a, b ∈ A, (b, a) /∈ S}.

This is true if S consists of all pairs of alternatives over which a coalition is decisive, but not
otherwise. Muller’s application of this claim, however, violates this restriction. A correct
restatement is “if S is the set of all pairs of alternatives over which a coalition is decisive, then
S∗ is the set of all pairs of alternatives over which the complementary coalition is decisive.”
The former statement fixes S regardless of the coalition; the latter statement chooses the
“right” S for each coalition. The counter example is as follows:

Example 3. Let A = {a, b, c, d, e, f } and

� = {cbeadf, ceabfd, fabecd, dcbaef, aecbfd, adbcef, cbdaef, afbced, abfced}.

The possible rankings of every triple of alternatives in � are listed in Table 1. Observe that
� has no trivial pairs. Given an ASWF in terms of the d variables (of the integer program),
let Dr = {(x, y) ∈ A2 : dr(x, y) = 1}.

5.1. Two agents

We first show that � does not admit a 2-person AMASWF. We begin with a simple
lemma, whose proof is immediate from Eq. (2).

Lemma 3. For all x, y, d1(x, y) + d1(y, x) = 1. In particular, D1 contains exactly half
the ordered pairs of alternatives.

Lemma 4. Suppose � contains all possible orders of a triple x, y, z of alternatives except
the order xyz. Then,

(a) zx ∈ D1,
(b) d1(y, z) = d1(y, x),
(c) d1(x, y) = d1(z, y).
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Table 1
Triplets associated with �

Category Alternatives Possible Ranking Properties

C1 a, b, c acb, cba, cab, abc no Condorcet triple
d , e, f fed, edf , def , efd no Condorcet triple

C2 a, b, d bad , abd , dba, adb, bda no dab
a, b, e bea, eab, abe, bae, aeb no eba
a, c, d cad , acd , dca, adc, cda no dac
a, c, f caf , fac, acf , cf a, afc no fca
b, c, e cbe, ceb, bec, ecb, bce no ebc
b, c, f cbf , f bc, bcf , cf b, bf c no fcb

C3 a, b, f baf , af b, fab, abf f above a only when f above b

f above b only when a above b

a, c, e cae, aec, ace, cea e above a only when c above a

e above c only when a above c

a, e, f eaf , af e, f ae, aef , e above a only when e above f

f above a only when f above e

b, c, d dcb, cbd , dbc, bcd d above b only when d above c

d above c only when d above b

b, d, f f bd , bdf , dbf , bfd d above b only when d above f

f above b only when f above d

c, d, e ecd , cde, dce, ced d above c only when d above e

e above c only when e above d

C4 a, d, e ead , ade, dae, aed e above d only when a above d

d above e only when a above e

a, d, f fad, adf , daf , afd d above a only when d above f

d above f only when a above f

b, d, e ebd , bde, dbe, bed d above e only when b above e

e above d only when b above d

b, e, f ebf , bfe, f be, bef e above b only when e above d

e above f only when b above f

c, d, f fcd, cdf , dcf , cfd d above f only when c above f

f above d only when c above d

c, e, f fec, ecf , fce, cef e above f only when c above f

c above f only when e above f

Proof. From the 5 orderings yzx, zxy, zyx, yxz, xzy and (5)–(6) we have the following
implications:

• d1(y, z)�d1(y, x), d1(x, y)�d1(z, y);
• d1(z, y)�d1(z, x), d1(x, z)�d1(y, z);
• d1(y, x)�d1(y, z), d1(z, y)�d1(x, y);
• d1(x, z)�d1(x, y), d1(y, x)�d1(z, x).

Hence d1(y, z) = d1(y, x), d1(x, y) = d1(z, y). If d1(x, z) = 1, then d1(x, y) = d1(z, y)

= d1(z, x) = 1. This is a contradiction. Hence we have d1(x, z) = 0, i.e. d1(z, x) = 1. �
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Lemma 5. The domain � does not admit a 2-person anonymous and monotonic ASWF.

Proof. Suppose there exists a 2-person AMASWF on �. Then D1 is well defined. From
Table 1, we see that all possible orderings of the set {a, b, d} are present except for the order
dab. Applying Lemma 4, we conclude that

d1(b, d) = 1, d1(a, b) = d1(a, d), d1(d, a) = d1(b, a).

Applying Lemma 4 to the sets {a, b, e}, {a, c, d}, {a, c, f }, {b, c, e}, and {b, c, f },
respectively, we deduce

• d1(b, d) = 1, d1(a, b) = d1(a, d), d1(d, a) = d1(b, a);
• d1(a, e) = 1, d1(b, a) = d1(b, e), d1(e, b) = d1(a, b);
• d1(c, d) = 1, d1(a, c) = d1(a, d), d1(d, a) = d1(c, a);
• d1(a, f ) = 1, d1(c, a) = d1(c, f ), d1(f, c) = d1(a, c);
• d1(c, e) = 1, d1(b, c) = d1(b, e), d1(e, b) = d1(c, b); and
• d1(b, f ) = 1, d1(c, b) = d1(c, f ), d1(f, c) = d1(b, c).

Now, observe that from these relationships, we must have

d1(d, a) = d1(b, a) = d1(b, e) = d1(b, c) = d1(f, c) = d1(a, c) = d1(a, d),

which is a contradiction, since d1(d, a) + d1(a, d) = 1. �

Remarks. While we require the ASWF to be anonymous and monotonic, we do not require
it to be neutral. Clearly, a 2-person ASWF cannot be anonymous and neutral if social
indifference is not permitted. The absence of neutrality gives the ASWF the freedom to
resolve “ties” based on the labels of the alternatives. Lemma 5 essentially says that there is
no “consistent” way to resolve ties in the domain �. It may be tempting to conclude that
Lemma 5 holds because social indifference is not permitted. This is not true, as we show
next. (Assuming strict individual preferences only strengthens our negative result.)

Social indifference: We briefly argue that Lemma 5 remains valid even if social indiffer-
ence is allowed. Note that � has only strict preferences, so a 2-person AMASWF f can be
fully described by specifying what it does when the agents disagree on the ranking of a pair
of alternatives x and y. (We have used both unanimity and IIA.) We encode the AMASWF
f using the decisiveness variables d(x, y) ∈ {0, 1/2, 1}. Whenever the agents disagree on
their x, y ranking, d(x, y) = 0 indicates that f ranks y above x, d(x, y) = 1 indicates that
f ranks x above y, and d(x, y) = 1/2 indicates that f is indifferent between x and y. From
this definition, it is clear that d(x, y) + d(y, x) = 1. Lemma 5 will follow if we can prove
Lemma 4, which is based on inequalities (5)–(6), so we consider these next. Suppose there
are p, q ∈ � and three alternatives x, y and z such that xpypz and yqzqx. Then

dr(x, y)�dr(x, z),

dr (z, x)�dr(y, x).

The first inequality follows from using a profile P in which r agents rank x over y over
z and |E| − r agents rank y over z over x. If dr(x, y) = 1/2 or dr(x, y) = 1 then f is
indifferent between x and y or prefers x to y; by unanimity, f prefers y to z. Since both the
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indifference and preference relations are transitive, f must prefer x to z, i.e., dr(x, z) = 1.
The second inequality can be proved similarly. Parts (b) and (c) of Lemma 5 are now
immediate. To see that part (a) is also true, note that d1(x, z) = 1 or d1(x, z) = 1/2 implies
d1(x, y) = d1(z, y) = d1(z, x) = 1, which is a contradiction. Thus, d1(x, z) = 0, i.e.
d1(z, x) = 1.

5.2. Three agents

We now prove that � must admit an AMASWF when there are three agents.

Theorem 2. The domain � admits a 3-person anonymous and monotonic ASWF.

Proof. It suffices to specify D1 and D2. Let

D1 = {(b, d), (b, f ), (a, e), (a, f ), (c, d), (c, e)},
D2 = A2 \ {(d, b), (f, b), (e, a), (f, a), (d, c), (e, c)}.

(See Fig. 3.) The definition of D1 and D2 allows us to construct an ASWF F to rank the
alternatives, given any 3-person profile from �. By construction, the d variables associated
with F satisfy (1, 2, 4). It remains to show that they satisfy (3). We do this on a case-by-case
basis. In Table 1 we have divided the triples into categories. We select one triple from each
category and show that (3) holds. An identical argument applies to all of the other triples
in the same category.

(C1) Consider the triple {a, b, c}. In (3) set x = a, y = b, z = c. Note that the domain �
does not contain any Condorcet triples associated with the 3 alternatives. Given the
orderings of a, b, c in � it follows that B = W = ∅. Since there are only three agents,
it is not possible for

|A| + |U | + |V |�2, |U |�2, and |C| + |V |�2

at the same time. Hence

d|A|+|U |+|V |(a, b) + d|U |(b, c) + d|C|+|V |(c, a)�2.

Similarly, it is not possible for

|C|�2, |A| + |V | + |C|�2, and |A| + |U |�2

at the same time. Hence

d|C|(b, a) + d|A|+|V |+|C|(c, b) + d|A|+|U |(a, c)�2.

(C2) Consider the triple {a, b, d}. In (3) set x = a, y = b, z = d. Given the orderings of
a, b, d in � it follows that V = ∅. Since there are only three agents, it is not possible
for

|A| + |U |�2, |B| + |U | + |W |�1, and |C| + |W |�2
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at the same time. Hence

d|A|+|U |(a, b) + d|B|+|U |+|W |(b, d) + d|C|+|W |(d, a)�2.

Similarly, it is not possible for

|C| + |W | + |B|�2, |A| + |C|�3, and |A| + |B| + |U |�2

at the same time. Hence

d|C|+|W |+|B|(b, a) + d|A|+|C|(d, b) + d|A|+|B|+|U |(a, d)�2.

(C3) Consider the triple {a, e, f }. In (3) set x = a, y = e, z = f . Given the orderings of
a, e, f in � it follows that C = W = ∅. Since there are only three agents, it is not
possible for

|A| + |U | + |V |�1, |B| + |U |�2, and |V |�3

at the same time. Hence

d|A|+|U |+|V |(a, e) + d|B|+|U |(e, f ) + d|V |(f, a)�2.

Similarly, it is not possible for

|B|�3, |A| + |V |�2, and |A| + |B| + |U |�1

at the same time. Hence

d|B|(e, a) + d|A|+|V |(f, e) + d|A|+|B|+|U |(a, f )�2.

(C4) Consider the triple {a, d, e}. In (3) set x = a, y = d, z = e. Given the orderings of
a, d, e in � it follows that C = W = ∅. Since there are only three agents, it is not
possible for

|A| + |U | + |V |�2, |B| + |U |�2, and |V |�3

at the same time. Hence

d|A|+|U |+|V |(a, d) + d|B|+|U |(d, e) + d|V |(e, a)�2.

Similarly, it is not possible for

|B|�2, |A| + |V |�2, and |A| + |B| + |U |�1

at the same time. Hence

d|B|(d, a) + d|A|+|V |(e, d) + d|A|+|B|+|U |(a, e)�2.

By an exhaustive argument, we conclude that the F constructed using D1 and D2 is an
AMASWF. �

Any 2n-person AMASWF can be used to construct a 2-person solution: consider the
restricted set of profiles in which agents 2, 3, . . . , n have the same preferences as agent 1,
and agents n + 2, n + 2, . . . , 2n have the same preferences as agent n + 1. Therefore, the
domain � constitutes a counterexample to the claim made by Muller [11].
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5.3. Discussion

Example 3 highlights a key difficulty in the study of AMASWFs: the existence of such
rules depends both on the domain and on the number of agents. (This is true even if social
indifference is permitted.) It is natural to ask if there exists a number n̂ such that the existence
of an n̂-person AMASWF will guarantee the existence of an AMASWF for all n > n̂. Muller
[11] showed that n̂ > 2, and our example shows that n̂ > 3. We next argue that such an n̂

does not exist for n̂ odd.

Theorem 3. Let � be a domain that admits a 3-person anonymous and monotonic ASWF
d ′. If the set D1[d ′] is transitive, then � admits a 2k + 1-person anonymous, monotonic,
ASWF for all k > 1.

Remark. Theorem 3 generalizes the following well-known result: If the majority rule (i.e.,
D1 = ∅) is a social welfare function on a domain for 3 agents, then the majority rule is a
social welfare function on that domain for any odd number of agents.

Proof of Theorem 3. Let d ′ be the given 3-person AMASWF on �. We construct a 2k + 1
rule, d on � as follows: dr = d ′

1 for r �k and dr = d ′
2 for r �k + 1. The rule d is clearly

anonymous and monotonic. We prove that it is an ASWF by showing that if d violates (3)
then d ′ must also violate (3), contradicting the fact that d ′ is an ASWF on �. Suppose then
a violation of (3) on the triple x, y, z. Let A, B, C, U, V , and W (possibly empty) be the
associated partition of the 2k + 1 agents. Violation of (3) implies that

d|A|+|U |+|V |(x, y) + d|B|+|U |+|W |(y, z) + d|C|+|V |+|W |(z, x) = 3

and therefore

d|A|+|U |+|V |(x, y) = d|B|+|U |+|W |(y, z) = d|C|+|V |+|W |(z, x) = 1.

Case 1: All of |A|+|U |+|V |, |B|+|U |+|W | and |C|+|V |+|W | are at least k+1. We
conclude from the definition of d that d ′

2(x, y) = d ′
2(y, z) = d ′

2(z, x) = 1. Next, from the
hypothesis of the case each pair of sets from the collection {A ∪ U ∪ V, B ∪ U ∪ W, C ∪
V ∪ W } has a non-empty intersection, and so U, V, W �= ∅; this implies we can find the
orderings xyz, yzx and zxy in �. Now consider the 3-person rule on the preference profile
(xyz, yzx, zxy). Observe that 2�d ′

2(x, y) + d ′
2(y, z) + d ′

2(z, x) = 3, a contradiction.
Case 2: Exactly two of |A|+ |U |+ |V |, |B|+ |U |+ |W | and |C|+ |V |+ |W | are at least

k + 1. Without loss of generality, suppose that |A| + |U | + |V |, |B| + |U | + |W |�k + 1
and |C|+ |V |+ |W |�k. We conclude from the definition of d that d ′

2(x, y) = d ′
2(y, z) = 1

and d ′
1(z, x) = 1. Since {A ∪ U ∪ V } ∩ {B ∪ U ∪ W } �= ∅ it follows that U �= ∅. Thus

the ordering xyz, is present in �. Since {C ∪ V ∪ W } �= ∅, the ordering xz is present in
�. Therefore � contains an ordering of {x, y, z} (different from xyz) in which z is ranked
above x. It is clear that d ′ violates (3) on any preference profile in which two agents rank
xyz and the third has this other ranking (z above x).

Case 3: Exactly one of |A| + |U | + |V |, |B| + |U | + |W | and |C| + |V | + |W | is at least
k + 1. Without loss of generality suppose that |B|+ |U |+ |W |, |C|+ |V |+ |W | � k. Now
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d|A|+|U |+|V |(x, y) = 1 implies d ′
2(x, y) = 1. Similarly d ′

1(y, z) = d ′
1(z, x) = 1. However

transitivity of D1[d ′] implies d ′
1(y, x) = 1, contradicting the fact that d ′

2(x, y) = 1.
Case 4: None of |A|+|U |+|V |, |B|+|U |+|W | and |C|+|V |+|W | is at least k+1. In this

case, violation of (3) by d implies that d ′
1(x, y) = d ′

1(y, z) = d ′
1(z, x) = 1. First suppose

that A, B, and C are all non-empty; in this case, � must contain the orderings xzy, yxz, zyx.
The given d ′ violates (3) on the 3-agent profile (xzy, yxz, zyx), a contradiction. So, we
may suppose at least one of A, B and C is empty. Without loss of generality, suppose C = ∅.
Then,

2k + 1 = |A| + |U | + |V | + |W | + |B| � k + |W | + |B| � 2k,

a contradiction. �

Note that Example 3 discussed earlier satisfies the hypothesis of Theorem 3. In particular,
the domain � defined there admits an AMASWF whenever the number of agents is odd,
and does not admit such a solution whenever the number of agents is even. The next result
provides an easy sufficient condition in terms of a 2-person solution. This result is essentially
due to Muller [11], but we state and prove it here for the sake of completeness.

Theorem 4. Let � be a domain that admits a 2-person anonymous and monotonic ASWF
d ′. If D1[d ′] is transitive, then � admits an anonymous, monotonic, ASWF for all n > 2.

Proof. Let d ′ be the 2-person AMASWF on �. We define an n-person rule d such that
dj (x, y) = d ′

1(x, y) for all x and y and j �n−1. This rule is clearly anonymous and mono-
tonic; we next show that it is an ASWF. Note that the set D1[d ′] is transitive and contains ex-
actly half the pairs. Suppose d violates (3) on the triple {x, y, z} and let A, B, C, U, V, W be
the associated partition. Violation of (3) implies thatd|A|+|U |+|V |(x, y) = d|B|+|U |+|W |(y, z)

= d|C|+|V |+|W |(z, x) = 1. Suppose that |A|+|U |+|V |, |B|+|U |+|W | and |C|+|V |+|W |
are all at most n− 1. Then d ′

1(x, y) = d ′
1(y, z) = d ′

1(z, x) = 1 which violates the transitiv-
ity assumption. Hence at least one of |A|+ |U |+ |V |, |B|+ |U |+ |W | or |C|+ |V |+ |W | is
n. In fact, at most one of them can have value n, for otherwise, all the agents must have the
same ranking, yielding a unanimous preference profile in which a violation of (3) cannot
occur. Suppose |A| + |U | + |V | = n. Since |B| + |U | + |W | and |C| + |V | + |W | have
value at most n − 1 it follows that d ′

1(y, z) = d ′
1(z, x) = 1. By transitivity, d ′

1(y, x) = 1
and d ′

1(x, y) = 0. Suppose both U and V are non-empty. Then, the given rule d ′ cycles on
the 2-person profile (zxy, xyz), a contradiction. However, if either of U or V is empty, a
violation of (3) cannot occur. �

Remark. The social welfare function constructed in the proof of Theorem 4 may be viewed
as a status-quo rule: The transitive ordering, �, consistent with D1 may be regarded as the
status-quo, which can be overturned only by unanimity. Such a D1 is termed a transitive
sink in Muller [11]. In a recent paper, Dasgupta and Maskin [3, p. 30] call such a rule
a unanimity rule with order of preference �. In fact, our Theorem 4 is closely related to
Dasgupta and Maskin [3, Theorem 12]. In their work, Dasgupta and Maskin show that any
domain admitting an ASWF satisfying anonymity and tie-breaking consistency also admits
a status-quo rule as an ASWF. (Such rules are clearly anonymous and monotonic.) When all
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preferences are strict, their tie-breaking consistency condition is equivalent to requiring a
transitive D1. Dasgupta and Maskin do not assume monotonicity; it is clear that our proof of
Theorem 4 does not use monotonicity either. Monotonicity has no bite because all 2-person
ASWFs are monotonic anyway.

Consider an arbitrary domain �. If � does not admit a 2-person AMASWF, it cannot
admit a 2k-person AMASWF for any k > 1. This observation, along with Theorem 4, helps
us identify the “difficult” domains: those � for which every 2-person AMASWF d has an
intransitive D1[d]. Muller [11] gives an example of such a domain; in his example, the
domain admits a unique 2-person anonymous ASWF (all 2-person ASWFs are monotonic
because of unanimity) for which D1 happens to be intransitive. Muller’s example does not
admit a 3-person solution (hence cannot admit a 6-person solution), but admits a 4-person
solution. Furthermore, he (implicitly) claimed that if � admits an AMASWF for all n�3,
then it must necessarily admit a 2-person solution d with a transitive D1[d]; his proof of
this result relied on Claim 1, which, unfortunately, is not true. The result (stated next as
Muller’s conjecture), however, may well be true; moreover, if true, it provides a complete
characterization of domains that admit an AMASWF, regardless of the number of agents.

Conjecture 1 (Muller). If � admits an anonymous, monotonic, ASWF for all n�3, then it
must necessarily admit a 2-person solution d with a transitive D1[d].

As far as we know, Conjecture 1 is still unresolved; note that its converse is stated and
proved as Theorem 4. Conjecture 1 is useful because it characterizes domains that admit
an AMASWF regardless of the number of agents. We conclude this section by proving the
following related result.

Theorem 5. Suppose � admits an anonymous, monotonic, 3-person ASWF d ′, with D1[d ′]
transitive. Suppose also that � admits a 2-person solution d̂ with a (possibly intransitive)
D1[d̂] that contains D1[d ′]. Then � admits an anonymous, monotonic ASWF for all n > 3.

Proof. For odd n, an AMASWF exists by Theorem 3, so we assume n = 2k, for k > 1.
We know that D1[d̂] is transitive, and that (x, y) ∈ D2[d ′] if and only if (y, x) /∈ D1[d ′].
Also, we know that D1[d ′] ⊆ D1[d̂]. Consider the 2k-person rule d with the decisive sets

D1[d] = · · · = Dk−1[d] = D1[d ′],

Dk = D1[d̂], Dk+1[d] = · · · = D2k−1[d] = D2[d ′].

The rule d is clearly anonymous; to show that it is monotonic, we must show that D1[d̂] ⊆
D2[d ′]. Consider any (x, y) ∈ D1[d̂]. Then, (y, x) /∈ D1[d̂], which implies (y, x) /∈ D1[d̂],
which implies (x, y) ∈ D2[d ′]. We next show that d is transitive. The proof is similar to
the proof of Theorem 3. Referring to that proof we see that it covers all cases except when
at least one of |A| + |U | + |V |, |B| + |U | + |W | or |C| + |V | + |W | is equal to k. Without
loss of generality, we assume throughout that |A| + |U | + |V | = k.
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Case 1: Both |B| + |U | + |W |, |C| + |V | + |W |�k + 1 In this case U, V, W �= ∅, so, �
must contain the Condorcet triple xyz, zxy, yzx. As in the proof of Case 1 of Theorem 3,
the given rule d ′ will violate (3) on this triple.

Case 2: Exactly one of |B|+ |U |+ |W |, |C|+ |V |+ |W |�k + 1 and the other is at most
k − 1. Without loss of generality, let |B| + |U | + |W |�k − 1. Observe first that A ∪ U ∪ V

and C ∪ V ∪ W have a non-empty intersection. Thus V �= ∅. Now B ∪ U ∪ W must have
non-empty intersection with either A ∪ U ∪ V or C ∪ V ∪ W . Suppose the first, a similar
argument applies in the second case. Then U �= ∅. Since U and V are non-empty, we know
that � contains the orderings xyz and zxy. Violation of (3) by d implies that d ′

1(y, z) = 1
and d ′

2(z, x) = 1. Consider now a 3-person profile where two agents have the ordering zxy
and the other xyz. It is easy to see that d ′ cycles on this profile, a contradiction.

Case 3: Exactly one of |B|+ |U |+ |W |, |C|+ |V |+ |W |�k + 1 and the other is exactly
k. Without loss of generality, suppose |B| + |U | + |W | = k, |C| + |V | + |W |�k + 1. In
this case A ∪ U ∪ V and B ∪ U ∪ W have a non-empty intersection with C ∪ V ∪ W . Thus
V and W are non-empty, i.e., � contains the orderings zxy and yzx. Violation of (3) by d
implies that d̂1(x, y) = d̂1(y, z) = 1. Apply d̂ to the two-agent profile consisting of zxy
and yzx and a cycle results, a contradiction.

Case 4: |B| + |U | + |W | = k, |C| + |V | + |W | = k In this case one of the three sets
A ∪ U ∪ V , B ∪ U ∪ W , C ∪ V ∪ W has a non-empty intersection with the other two.
Without loss of generality, suppose that it is B ∪U ∪W . Then U and W are non-empty, and
the argument follows Case 3.

Case 5: |B| + |U | + |W |, |C| + |V | + |W |�k − 1 Violation of (3) by d implies that
d̂1(x, y) = d ′

1(y, z) = d ′
1(z, x) = 1. Transitivity of D1[d ′] implies d ′

1(y, x) = 1. Since
D1[d ′] ⊆ D1[d̂] it follows that d̂1(x, y) = 0 a contradiction. �

6. Conclusion

We show in this paper that the existence of an anonymous, monotonic ASWF function
depends on both the domain and on the number of the agents. We also generalize Moulin’s
characterization of anonymous, monotonic ASWFs on the domain of single-peaked prefer-
ences. In addition to the obvious open problems such as characterizing domains admitting
AMASWFs and characterizing all AMASWFs of such domains, our investigation suggests
three problems:

• What are the conditions on � such that dim(P (Dr))�2 for all r �(n−1)/2? i.e. is there
a more general condition on the domain that will ensure that all anonymous monotonic
social welfare functions are GMR?

• The examples in this paper were constructed using the crown graph, which is known to
be the smallest poset with dimension 3. Using posets with higher dimension, say k, can
one construct a domain such that k-person AMASWF exists but not l-person AMASWF,
for any l < k?

• What is the connection between the directed graphs Dr obtained from the social welfare
function and the domain �? In general, given Dr , is there a polynomial time algorithm
to construct the corresponding �, or prove that no domain corresponding to Dr exists?
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Note that finding a linear order given conditions on triples ordering is already in general
NP-Complete (cf. [12]).

We leave these issues for future research.
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