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a b s t r a c t

This paper proposes a multi-prize ‘‘reverse’’ nested lottery contest model, which can be viewed as the
‘‘mirror image’’ of the conventional nested lottery contest of Clark and Riis (1996a). The reverse-lottery
contest model determines winners by selecting losers based on contestants’ one-shot effort through a
hypothetical sequence of lotteries. We provide a microfoundation for the reverse-lottery contest from a
perspective of (simultaneous) noisy performance ranking and establish that the model is underpinned
by a unique performance evaluation rule. We further demonstrate that the noisy-ranking model can be
interpreted intuitively as a ‘‘worst-shot’’ contest, in which contestants’ performances are evaluated based
on their most severe mistakes. The reverse-lottery contest model thus depicts a great variety of widely
observed competitive activities of this nature. A handy closed-form solution for a symmetric equilibrium
of the reverse-lottery contest is obtained. We show that the winner-take-all principle continues to hold
in reverse-lottery contests. Moreover, we find that a reverse-lottery contest elicits more effort than a
conventional lottery contest whenever the prizes available to contestants are relatively scarce.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Varieties of economic activities are generically viewed as con-
tests, which include college admissions, rent seeking, R&D races,
legal battles, political campaigns, etc. The phenomenal pervasive-
ness of contests inspires numerous analyses of contenders’ strate-
gic behavior under various circumstances, which in turn demands
sensible and tractable models of diverse evolving characteristics.

One long-lasting concern in contest modeling is how to formu-
late the mechanisms that translate contestants’ effort outlays into
the probabilities of each contestant’s receiving each prize. A large
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chunk of the literature is anchored to awinner-take-all lottery con-
test model, which is built on the well-known ratio-form Contest
Success Function (CSF).3 With I contestants, the likelihood that a
contestant i will win the single prize is given by

pi(x) =
gi(xi)
I

j=1
gj(xj)

, (1)

where xj is the effort contributed by an arbitrary contestant j and
the impact function gj(·) increases with one’s own effort.4 Based on
the single-winner lottery model, Clark and Riis (1996a) propose
a multi-winner nested lottery contest model to allow a block of
prizes to be distributed in a one-shot contest, which has become
one of the most prominent frameworks for modeling multi-prize
imperfectly discriminatory contests.5 To give away L ≤ I prizes
V = (V1, . . . , VL), the contest implements a sequence of L inde-
pendent hypothetical lotteries, with each picking one recipient. All

3 The Tullock CSF (Tullock, 1980), which has been widely adopted and analyzed
in the literature, is a special case of the ratio-form CSF.
4 Skaperdas (1996) and Clark and Riis (1997) axiomatize this model. Clark and

Riis (1996b) point out the stochastic equivalence of a random choice model based
on McFadden (1973, 1974) and a winner-take-all lottery contest. This equivalence
result is rediscovered by Jia (2008).
5 Multi-prize lottery contest models have been applied in Clark and Riis (1996a,

1998), Amegashie (2000), Yates and Heckelman (2001), Szymanski and Valletti
(2005), Fu and Lu (2009, 2012a,b), Schweinzer and Segev (2012), etc.
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contestants commit to their one-shot efforts. The first winner is
chosen among all contestants by a lottery defined by CSF (1). He is
awarded the top prize V1 and is removed from the pool of contes-
tants eligible for other prizes. The recipient of the second prize, V2,
is subsequently picked by a lottery among the remaining contes-
tants. This procedure repeats until the last prize VL is given away.6

The nested lottery contest model depicts a mechanism that
identifies prize recipients directly among eligible candidates (Clark
and Riis, 1996a): One wins a prize when being picked by a
hypothetical lottery in a series of successive draws. Many real-
world competitions, however, implement an opposite procedure
in their decision processes. Consider, for example, the bids to host
the 2012Olympics.Moscowwas identified as the least competitive
candidate and eliminated first. New York was eliminated in the
second round, andMadrid and Paris in the third and fourth rounds,
respectively. London was the only candidate left. The contest
identifies losers directly and eliminates them successively: One
wins a prize only when he is not excluded.7 It should be noted that
the competition among the five cities is a simultaneous contest
with one-shot effort. Cities submit and present their proposals
before IOC members’ voting, and are not allowed to revise their
bids (i.e., bidding proposals and promotional campaign messages)
during the elimination process. Candidates exert a one-shot effort
throughout the entire process despite the multi-stage selection
procedure.

To provide an account of such a decision process based on
one-shot effort of contestants, we propose a ‘‘reverse’’ nested
lottery contest, which selects winners indirectly by excluding
losers directly using a series of hypothetical lotteries. A model of
the reverse selection procedure requires a function that specifies
the probability of one’s being identified as a loser given the effort of
contestants. For this purpose, we first propose a ratio-form Contest
Elimination Function (CEF). The likelihood of a constant i’s being
selected as a loser amongst I contenders also takes a ratio form,
which is formally expressed as

qi(x) =
[gi(xi)]−1

I
j=1

[gj(xj)]−1

, (2)

where the impact function gi(·) increases with one’s own effort. As
a result, ceteris paribus, one reduces the likelihood of his losing by
stepping up his effort.

Analogous to Clark and Riis (1996a), the reverse nested lottery
contest literally employs a sequence of independent lotteries to
give away L prizes. Contestants place their one-shot efforts, and
each lottery picks one loser by the CEF (2). This contestant is
eliminated from the pool of candidates eligible for subsequent
draws. The next loser is picked from the remaining pool by CEF (2).
A contestant is given the bottom prize, VL, if and only if he is picked
by the (I−L+1)th lottery and is then eliminated from the slate. The
contestantwho is picked in the next lottery receives the second-to-
bottom prize, VL−1. Based on the sunk bids (e.g., Olympics host-city
candidates’ proposals and their promotional campaign efforts), the
selection procedure repeats for I−1 rounds to determine the ranks
of all contestants, and the last survivor is awarded the top prize V1.

The reverse nested lottery contest (which will also be called
the ‘‘reverse-lottery contest’’ for simplicity in the remainder of the

6 Fu and Lu (2012b) uncover a (simultaneous) noisy-ranking mechanism that
underpins both the single-lottery CSF (1) and the hypothetical sequential-lottery
mechanism of Clark and Riis (1996a). The ranking mechanism unifies the single-
winner and multi-winner lottery models under the same umbrella.
7 A similar procedure is used in many beauty contests and TV talent shows:

Judges pick the winners in a competition by identifying and eliminating losers.
paper), to a large extent, can be viewed as themirror image of Clark
and Riis (1996a), who also model multi-prize contests with one-
shot effort. By their hypothetically sequential selection procedures,
the latter contest successively selects winners, and contestants
step up their bids to be picked in early draws. In contrast, the
reverse-lottery contest successively selects losers, and contestants
are compelled to exert effort to survivemore rounds of elimination
and thereby attain higher ranks.

In this paper, we explore three main aspects of the reverse
nested lottery contest model.

First, we provide microfoundations for the reverse-lottery
contest model and its underpinning CEF by considering a noisy
performance ranking model, which is a generalized variant of
Hirshleifer and Riley (1992).8 We establish a unique stochastic
equivalence between the reverse-lottery contest and the alterna-
tive noisy-ranking contest.

Second, we also show that the noisy-ranking model can be in-
terpreted as a ‘‘worst-shot’’ contest inwhich contestants are evalu-
ated by the most severe mistakes they make in performing a given
task. In other words, the performance evaluation rule based on
worst shots embodies the ‘‘wooden barrel’’ principle: The shortest
plank determines the amount of water held in a wooden barrel.

Third, with homogeneous contestants, we establish the con-
ditions for the unique symmetric pure-strategy equilibrium in a
reverse-lottery contest and provide a handy close-form solution
to the equilibrium. The link between the reverse-lottery contest
model and the conventional nested lottery contest of Clark and Riis
(1996a) is further explicated.We then discuss several potential ap-
plications of and implications for our equilibrium results.

This study complements the existing literature on contests
in several respects. The reverse-lottery contest model depicts a
different competitive environment from those abstracted by a
conventional lottery-contest model. As demonstrated by Baye and
Hoppe (2003) and Fu and Lu (2012b), a conventional lottery contest
is underpinned by a best-shot contest in which a contestant’s
performance is evaluated by the most favorable shock to his
performance, e.g., the research tournament model of Fullerton and
McAfee (1999). The two types of contest models must be matched
to different contexts.

The rest of this paper proceeds as follows. In Section 2, we
formally set up the reverse-lottery contest model and derive
its stochastic microfoundation. Section 3 reveals the economic
implications of the reverse-lottery contest through an equivalent
worst-shot contest. Section 4 presents the symmetric equilibrium
solution to a reverse-lottery contest and discusses two main
applications. A concluding remark is provided in Section 5.

2. The reverse nested lottery contest model and its microfoun-
dation

2.1. Reverse nested lottery contest model

A reverse nested lottery contest involves I (≥ 2) contestants
and gives away I (weakly) decreasing nonnegative prizes (Vk, k =

1, 2, . . . , I), with V1 ≥ · · · ≥ VI and V1 > VI .9 The ordered set
I , {1, 2, . . . , I} refers to contestants participating in the contest.
A vector x = (x1, x2, . . . , xI) denotes the one-shot effort entries
of the entire set of contestants. There is a set of impact functions

8 In the noisy ranking model, each contestant’s observable output is the sum of a
deterministic component, which increaseswith his effort, and a randomnoise term.
The contest ranks contestant’s observable outputs in a descending order, i.e., one
attains a better rank by contributing larger output.
9 With Vk = 0, ∀k ∈ {2, . . . , I}, the setting boils down to a winner-take-all

contest.
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g = (g1(·), g2(·), . . . , gI(·)), with gi(0) = 0 and g ′

i (·) > 0, ∀i ∈ I.
The ordered set g depicts the technology of the contest. For a given
x, a stochastic prize allocation plan is specified as follows.

The prize allocation procedure begins with a lottery among all
contestants. The lottery takes [gi(xi)]−1 as a contestant i’s entry.
Define [gj(xj = 0)]−1 as infinity for any j ∈ I. Let #(j|xj = 0) be
the count of zero effort entries in x. Each contestant i is picked by
the lottery with a probability [gi(xi)]−1I

j=1[gj(xj)]
−1 if xi ≠ 0, while hewould

be pickedwith a probability 1
#(j|xj=0) otherwise. In particular, when

there is a tie on gi(xi) across contestants, every contestant is picked
up with an equal probability.10,11 The selected contestant receives
the smallest prize VI and is eliminated from the pool eligible for
remaining prizes. Let Ωk, with k = I − 1, I − 2, . . . , 2, 1, denote
the set of remaining contestants eligible for all remaining prizes
Vk′ , with k′

≤ k.
A prize VI−1 is allocated by a lottery among all remaining

contestants ΩI−1. The lottery continues to take [gi(xi)]−1 as an
eligible contestant i’s entry. He receives VI−1 with a probability

[gi(xi)]−1
j∈ΩI−1

[gj(xj)]−1 if xi ≠ 0, while he receives it with probability
1

#(j|xj=0,j∈ΩI−1)
otherwise, where #(j|xj = 0, j ∈ ΩI−1) is the

count of zero effort entries in xΩI−1 .
12 The recipient of prize VI−1 is

eliminated from the pool for the subsequent draw, which is to give
away prize VI−2 by picking one recipient from the pool of eligible
contestants ΩI−2.

The process continues for I − 1 rounds. By the procedure
sketched in the preceding paragraph, each prize Vk, with k ∈

{2, . . . , I}, is given away to one contestant through the (I + 1 −

k)th lottery. The allocation of the top prize V1 is determined
automatically when the recipient of V2 is picked in the last draw.

We call [gi(xi)]−1
j∈Ωk

[gj(xj)]−1 , i ∈ Ωk, a ratio-form Contest Elimination

Function (CEF), which differentiates it from the widely used
concept of Contest Success Function (CSF). Let the sequence {ik}Ik=1,
with ik ∈ I, denote a prize allocation outcome, i.e., contestant ik
receives prize Vk (i.e., being picked in the (I − k + 1)th draw).
For given x > 0, the likelihood of this allocation outcome can be
expressed as

p({ik}Ik=1) = Π I
k=1

[gik(xik)]
−1

k
k′=1

[gik′ (xik′ )]
−1

. (3)

As aforementioned, this reverse nested lottery contest model
resembles a mirror image of a conventional nested-lottery contest
(Clark and Riis, 1996a). It picks losers successively by the ‘‘single-
loser’’ CEF (2).

2.2. Microfoundation: a noisy-ranking perspective

We consider the following noisy performance ranking contest,
which would pave a foundation for the reverse nested lottery
contest.

10 Note that when xi ≠ 0 and #(j|xj = 0) ≥ 1, we have [gi(xi)]−1I
j=1[gj(xj)]−1 = 0 since

[gj(xj = 0)]−1 is defined as infinity. Those who contribute zero effort have an equal
chance of being chosen as the loser in the lottery.
11 Similar to a standard lottery contest with ratio-form success function,
contestants with equal positive ‘‘output,’’ i.e., gi(xi) = gj(xj) ≠ 0, will be chosen
as the loser with equal chance, provided that all other contestants make positive
effort.
12 Because [gj(xj = 0)]−1 is defined as infinity, when xi ≠ 0 and #(j|xj = 0, j ∈

ΩI−1) ≥ 1, we have [gi(xi)]−1
j∈ΩI−1

[gj(xj)]−1 = 0. That is, a contestant will not be selected as

a loser if he places positive bids while some of other contestants make zero effort.
There are I ≥ 2 contestants, indexed by i ∈ I , {1, 2, . . . , I}.
They simultaneously submit their one-shot effort entries x =

{x1, . . . , xI}, to compete for one of I prizes. The I prizes are ordered
by their values, with V1 ≥ V2 ≥ · · · ≥ VI and V1 > VI . A contestant
i supplies effort xi, which allowshim toproduce a composite output
yi. It can be described by
log yi = log gi(xi) + εi, ∀i ∈ I. (4)
According to (4), the perceivable output log yi of contestant i
includes two parts: the deterministic output function log gi(xi),
which is strictly increasing in xi, and an additive noise term εi,
which is randomly drawn from a Type-I extreme value (minimum)
distribution with cumulative distribution function (c.d.f.)

F(ε) = 1 − e−eε , ε ∈ (−∞, +∞). (5)
Contestants are ranked by their perceivable outputs in descending
order. Prizes are accordingly allocated by their ranks. Ties are
broken randomly.

This noisy-ranking (minimum) model is similar to the main
setting of Fu and Lu (2012b).13 They differ from each other only
in the underlying distributions of their additive noise terms. The
current model assumes a Type-I extreme value (minimum) distri-
bution, while Fu and Lu (2012b) assume a Type-I extreme value
(maximum) distribution.14 Fu and Lu (2012b) demonstrate that
the noisy-ranking (maximum) model is stochastically equivalent
to the conventional nested lottery contest built on the ratio-form
CSF (1).15

The following Theorems 1–3 can be obtained by establishing
a statistical link between the current model to the noisy-ranking
model of Fu and Lu (2012b). For brevity, all the derivations are
relegated to Appendix A.

Theorem 1. Consider a given x > 0 such that gi(xi) > 0, ∀i ∈ I. The
probability that contestant i achieves the lowest performance and is
ranked at the bottom in model (4) is

p(i|x) =
[gi(xi)]−1

j∈I
[gj(xj)]−1

, ∀i ∈ I. (6)

Proof. See Appendix A. �

The probability expression (6) depicts the probability of one’s
performance (log yi) being ranked the lowest in model (4), which
is given by the ratio of the inverse of one’s deterministic output,
[gi(xi)]−1, to the sum


j∈I[gj(xj)]

−1. Apparently, expression (6)
coincides with the ratio-form CEF (2).

We then consider the probabilistic distribution of all possible
complete rankings for a given set of effort entries x > 0. Let the
sequence {ik}Ik=1 denote a complete ranking of all I contestants
in model (4), where ik is the contestant in the kth position,
i.e., contestant ik has the kth highest observed output.

Theorem 2. In a noisy-ranking (minimum) contestmodel (4), for any
given effort entries x > 0 such that gi(xi) > 0, ∀i ∈ I, the likelihood
of any complete ranking outcome {ik}Ik=1 can be expressed as

p({ik}Ik=1) = Π I
k=1

[gik(xik)]
−1

k
k′=1

[gik′ (xik′ )]
−1

. (7)

13 The term ‘‘(minimum)’’ refers to the fact that the noise term follows a Type-
I extreme value (minimum) distribution.
14 They belong to the same family of extreme value distributions (Gumbel
distributions), but lead to contrasting implications: The former depicts the
asymptotic distribution for the minimum of a large number of identically
distributed random variables, while the latter depicts that for the maximum.
15 Similarly, the term ‘‘(maximum)’’ is used to indicate that the additive noise term
follows a Type-I extreme value (maximum) distribution.
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Proof. See Appendix A. �

(7) gives the ex ante likelihood of any complete ranking, which
is simply the cumulative product of all the terms included in
the series {[gik(xik)]

−1/
k

k′=1[gik′ (xik′ )]
−1

}
I
k=1. When the noise

terms follow a Type-I extreme value (minimum) distribution,
[gik(xik)]

−1/
k

k′=1[gik′ (xik′ )]
−1 gives the conditional probability of

contestant ik’s output being the lowest among the top k highest
ones, given that contestants {ik}kk′=1 are the top k highest ones.16

The result of (7) reveals the link of the noisy-ranking
(minimum) contest model to the reverse-lottery contest model.
Recall that in the reverse-lottery contest model, the ex ante
likelihood of a prize allocation outcome p({ik}Ik=1) is given by
(3), which coincides with (7) in the noisy-ranking (minimum)
contest model (4). Therefore, as implied by Theorems 1–2, the
hypothetical sequential lottery process applied in the reverse-
lottery contest model in fact reflects a statistical property
of a hidden simultaneous noisy-ranking rule implied in the
noisy-ranking contest model. The probabilistic prize allocation
mechanism, as described by (3), does not necessarily rely on a
sequentially implemented selection procedure.

Theorem 3. When I ≥ 3, the noisy-ranking (minimum) contest
model (4) is stochastically equivalent to the reverse-lottery-contest
model R(I, g(·),V) if and only if εi follows a Type-I extreme value
(minimum) distribution with c.d.f. of F(ε) = 1 − e−eε+b

, with ε ∈

(−∞, +∞) and b ∈ R.17

Proof. See Appendix A. �

Theorem 3 establishes the unique stochastic equivalence of
the noisy-ranking (minimum) contest model (4) with the family
of multi-prize reverse lottery contests built on ratio-form CEF
(2). The theorem provides a microeconomic underpinning for the
reverse-lottery contest: The reverse nested lottery contest model
is underpinned by a unique noisy-ranking system.

3. ‘‘Worst-shot’’ contests

We set up an alternative but equivalent worst-shot contest,
which intuitively interprets the statistical nature of the Type-I
extreme value (minimum) distribution and reveals the economic
implications and practical relevance of our contest models from
a different perspective. For this purpose, we transform the noisy-
ranking (minimum) contest model (4) into a direct variant, which
is formulated originally by Hirshleifer and Riley (1992).18 Let
contestants be ranked by yi with

yi = gi(xi) × ε̃i (8)

in descending order. Here, ε̃i is defined as ε̃i = exp εi. With εi
drawn from a Type-I extreme value (minimum) distribution, yi
follows a Weibull (minimum) distribution with c.d.f.

Pr(yi ≤ y) = 1 − e
−y

gi(xi) . (9)

We further define a uniform decreasing transformation of yi with

mi = F−1
0 (e−yi), i = 1, 2, . . . , I,

16 It should be emphasized that both Theorems 1 and 2 are derived from the
noisy-ranking (minimum) contest model (4) where players’ efforts are made
simultaneously and they are ranked by their perceivable outputs. In contrast,
the reverse nested lottery contest literally employs a sequence of (hypothetical)
independent lotteries to give away multiple prizes.
17 Note that R(I, g(·),V) denotes a reverse nested lottery contest with I =

{1, 2, . . . , I} contestants, output functions g(·) = (g1(x1), g2(x2), . . . , gI (xI )), and
prizes V = (V1, V2, . . . , VI ).
18 A two-player version of this multiplicative-noise ranking contest is further
discussed by Konrad (2009), as well as Fu and Lu (2012b).
where F0(·) : R+ → [0, 1] is a cumulative distribution function
of a continuous random variable. The random variable mi is
independently distributed. Because mi is decreasing in yi, ranking
contestants by yi in descending order is equivalent to ranking them
by mi in ascending order. That is, the lower the realized value of
mi, the higher the contestant i’s rank. The c.d.f. of mi is derived as
follows:
Pr(mi ≤ m) = Pr(F−1

0 (e−yi) ≤ m)

= Pr(e−yi ≤ F0(m))

= Pr(yi ≥ − log F0(m))

= 1 − [1 − exp(log F0(m)/gi(xi))]
= exp(log F0(m)/gi(xi))

= F0(m)
1

gi(xi) . (10)
If we interpret F0(·) as the distribution of the magnitude of

a mistake whenever it happens, expression (10) can then be
interpreted as the c.d.f. of the highest-order statistic of [gi(xi)]−1

randommistakes. The above statistical transformation thus alludes
intuitively to a worst-shot contest, in which each contestant is
evaluated based on his least favorable performance, i.e., his biggest
mistake. Apparently, extra effort decreases [gi(xi)]−1 (i.e., the
number of mistakes) and causes a downward shift of probability
mass in the distribution of one’s perceived defect, which reflects
the conventional wisdom that ‘‘practice (more effort) makes
perfect (fewer mistakes)’’. Contestants are then incentivized to
improve the reliability of their performance.

By the statistical transformation from noisy-ranking (mini-
mum) contest model (4)–(10), and the above definition of a worst-
shot contest, the following is immediate.

Theorem 4. The worst-shot contest with an arbitrary distribution of
the underlying mistake distribution F0(·) is stochastically equivalent
to the noisy-ranking contest model with a noise term following the
Type-I extreme value (minimum) distribution. Hence, a worst-shot
contest is also stochastically equivalent to a reverse-lottery contest.

Worst-shot contests resemble common real-world competitive
situations, in which contenders’ performance is judged by how
closely they meet predefined standards, and one’s worst mistake
matters the most in his ultimate performance measure—e.g.,
competitions in acrobatics, diving, and gymnastics. Alternatively,
a worker’s performance is often required to closely follow codes of
practice in the workplace, while a product’s rating often depends
on how well it meets existing technological standards.19

The statistical nature and economic logic of the noisy-ranking
(minimum) contest model, as well as those of the reverse-lottery
contest, therefore unfold in this transparent and lucid alternative
environment of worst-shot contests. This statistical foundation
explicates the proper scope of application for a reverse-lottery-
contest model.

4. Symmetric equilibrium

4.1. Symmetric equilibrium in reverse-lottery contest

In this part, we characterize the bidding equilibrium in a
reverse-lottery contest, and depict the conditions that guarantee
equilibrium existence. For the sake of tractability, we focus on a
symmetric setting. Contestants are homogeneous in the sense that
gi(x) = g(x), ∀i ∈ I, and they have the same linear cost function
c(x) = x. We focus on the symmetric pure-strategy equilibrium of
the game, in which all contestants exert the same amount of effort

19 The quality of engineering projects, such as road and utility construction, is
measured against preset standards, and industrial-equipment manufacturers go
to great lengths to reduce the failure rates of their products, which are the key
determinant of a manufacturer’s market success.
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x∗.20 To provide a sensible solution to the reverse-lottery contest,
we impose amild regularity condition on contest technologies.We
assume that the impact function is log-concave, which implies that
g(·)
g ′(·)

is increasing in its argument.
We first establish the conditions for the existence of such an

equilibrium. For this purpose,we focus on themostwidely adopted
class of impact functions g(x) = xr , due to the technical difficulties
that typically arise from a general impact function. Skaperdas
(1996), however, shows that the CSF with an impact function xr
is the only additive CSF that is homogeneous of degree zero.21 We
first consider a single-prize (i.e., winner-take-all) reverse-lottery
contest.

Theorem 5. In a winner-take-all reverse-lottery contest model with
g(x) = xr , a (unique) symmetric pure-strategy equilibrium (SPSE),
exists if and only if the discriminatory parameter r falls below a cutoff
rpc , i.e., r ≤ rpc , where

rpc =
1

−1 +

I−1
t=0

1
I−t

. (11)

Proof. See Appendix B. �

Theorem 5 provides a sufficient and necessary condition for the
existence of a SPSE. Analogous to its counterpart in a conventional
lottery contest, the SPSE requires a moderate discriminatory
parameter r . The upper bound rpc for r simply ensures that
players’ participation constraints are satisfied. That is, each player
receives a nonnegative expected payoff whenever all of them exert
equilibrium effort in the SPSE. The bound rpc depends on the
number of contestants. When I increases,

I−1
t=0

1
I−t must increase,

which lowers rpc and makes the SPSE less likely.
As shown by Perez-Castrillo and Verdier (1992), in a conven-

tional lottery contest with a winner-take-all prize structure and
g(x) = xr , a unique SPSE exists if and only if the discriminatory
parameter r falls below a cutoff rpc′, i.e., r ≤ rpc′, where

rpc′ =
1

1 − 1/I
.22 (12)

The conventional wisdom holds that a more discriminatory
contest, i.e., a larger r , leads to excessive rent dissipation. Hence,
a moderate r is required to rein in contestants’ effort incentives,
therebymaintaining the participation constraints in the game. The
logic applies in both conventional and reverse lottery contests.

Comparing (11) with (12), for a given r , a SPSE is less likely to
exist in the reverse lottery contest than in a conventional lottery
contest because rpc < rpc′ for all I ≥ 3.23 Our subsequent analysis
(Section 4.2) sheds further light on this observation. Corollary 1
shows that under a winner-take-all structure, contestants exert
more effort in a reverse lottery contest than in a conventional
lottery contest. Hence, contestants’ participation constraints are
more likely to break down in a reverse lottery contest than in a
conventional lottery contest, which explains the observation of
rpc < rpc′.24

20 We can allow for a more generally specified effort cost function c(x). However,
this setting is strategically equivalent to an alternative contest, inwhich contestants
bear linear effort cost, while having an impact function h(·) = g(c−1(·)).
21 Contests with an impact function xr are well-known as generalized Tullock
contests.
22 Similar to its counterpart in the reverse lottery contest, the bound rpc′ decreases
as I increases, i.e., an increase in I lowers rpc and makes the SPSE less likely.
23 The two types of the contests (i.e., the conventional and reverse nested lottery
contests) converge if and only if I = 2.
24 In Section 4.2, more general results (see Theorems 8 and 9) are derived and the
intuition behind the results is also discussed.
We further consider a more general setting that allows for
multiple decreasing positive prizes.

Theorem 6. Consider a reverse lottery contest model with g(x) = xr
and L(≤I) decreasing positive prizes, i.e., V1 ≥ · · · ≥ VL > 0
and Vj = 0 if j > L. A symmetric pure-strategy equilibrium (SPSE)
exists if the following conditions hold: (C1) r ≤ 1/(I − 1); and (C2)
L ≤ I − k + 1, where k is the minimal k such that25

k
t=0

1
I − t

> 1.

Proof. See Appendix B. �

Theorem 6 states that in a more general multi-prize setting, a
unique SPSE exists if the contest is not excessively discriminatory
and the number of positive prizes is not excessively large. A few
remarks are in order. First, Theorem 6 requires that r ≤ 1/(I −

1), which is a much stronger restriction on the size of r than
that for the winner-take-all contest, i.e., r ≤ rpc : By (11), it is
straightforward to observe rpc > 1/(I − 1). Second, the result
applies to a contest with an arbitrary number of contestants, and
the restriction on prize structure is rather weak. Third, Theorem 6
provides a sufficient condition for the existence of the SPSE in
a multi-prize setting. Neither (C1) nor (C2) is necessary for the
existence of SPSE.

Denote by x∗
r each individual contestant’s equilibrium effort in

a reverse-lottery contest. The SPSE requires that the equilibrium
effort x∗

r globally maximize a representative player’s expected
payoff, provided that others exert effort x∗

r . With impact function
g(x) = xr and I ≤ 100, our numerical simulations verify that for
any sequence of weakly decreasing prizes, x∗

r indeed constitutes a
global maximizer as long as r ≤ rpc holds, in which case neither
(C1) nor (C2) is required.26

Theorem 7. Suppose that a symmetric pure-strategy equilibrium
exists for a reverse-lottery contest with (weakly) decreasing prizes
Vk, k = 1, 2, . . . , I and increasing impact functions gi(x) =

g(x), ∀i ∈ I. In a SPSE, each contestant makes an effort

x∗

r = H−1


1
I

I
k=1

Vkc̃k


, (13)

where

H(x) ≡
g(x)
g ′(x)

; c̃k = −1 +

I−k
j=0

1
I − j

. (14)

Proof. See Appendix B. �

The solution of (13) depicts the symmetric pure-strategy
equilibrium of the contest whenever such an equilibrium exists.
Note that the log-concavity of g(·) ensures that this equilibrium is
unique whenever it exists. When the designer has full flexibility
to allocate a budget Γ > 0 among the I nonnegative prizes, (13)
implies that the optimal prize allocation (i.e., that maximizes total
effort) must follow the winner-take-all principle, i.e., V1 = Γ and
Vk = 0, ∀k ≥ 2.27

4.2. Reverse lottery contest versus conventional lottery contest

The results of Theorem 5 allow us to compare contestants’
equilibrium behaviors under different competitive environments.

25 One can verify that roughly k ≈ 0.632 · I .
26 Note that rpc > 1

I−1 .
27 The winner-take-all principle has been identified in a number of studies in
different settings, such as Moldovanu and Sela (2001), Clark and Riis (1998), Fu and
Lu (2009, 2012a).
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In this part,we explorewhether contestants are better incentivized
in a reverse-lottery contest than in a conventional lottery contest.
Intuitions underlying the difference in their performance will be
illustrated by the natures of the two contests.

To facilitate the comparison, let us restate the existing
equilibrium solutions to conventional lottery contests. Denote
by x∗

c a contestant’s equilibrium effort in a conventional lottery
contest.

Lemma 1 (Fu and Lu, 2009). In a symmetric pure-strategy equilib-
rium for a conventional lottery contest of Clark and Riis (1996a) with
prizes Vk, k = 1, 2, . . . , I , and impact functions gi(·) = g(·), ∀i ∈ I,
each contestant makes an effort

x∗

c = H−1


1
I

I
k=1

Vkck


, (15)

with

H(x) ≡
g(x)
g ′(x)

and ck = 1 −

k−1
i=0

1
I − i

. (16)

By (13) and (15), the equilibrium effort in either contest can
be expressed as an increasing function of a weighted sum of the
entire set of prizes. A weight c̃k is attached to each prize Vk in a
reverse-lottery contest, while ck is assigned to Vk in a conventional
lottery contest. Suchweight indicates the role played by prize Vk in
eliciting effort, and measures the intensity of incentives provided
by the prize. One key fact deserves to be noted before the formal
analysis of effort comparison.

Remark 1. c̃k = −cI+1−k.

Remark 1 highlights a ‘‘symmetry’’ between the two contest
models,which further confirms themirror-image relation between
the conventional lottery contest and the reverse lottery contest.
The statistical underpinning of this mirror-image relation is
illustrated inmore detail by the analysis we present in Appendix A.

Further, we compare x∗
c with x∗

r . The symmetry highlighted by
Remark 1, which results from the ‘‘mirror-image’’ relation, largely
facilitates the analysis. We focus on contests with I ≥ 3 players.28

The comparison begins with a simple case with L ∈ {1, . . . , I −
1} homogeneous strictly positive prizes, i.e., V1 = V2 = · · · =

VL = V > 0. We obtain the following.

Theorem 8. (i) A reverse-lottery contest elicits strictlymore (strictly
less) effort than a conventional lottery contest if and only if the
number of prizes L is strictly less (strictlymore) than I

2 , i.e., x
∗
r ≷ x∗

c

if and only if L ≶ I
2 .

(ii) When the number of contestants, I , is an even number, the two
contests elicit the same amount of effort if L =

I
2 , i.e., x

∗
r = x∗

c if
L =

I
2 .

Proof. See Appendix B. �

With homogeneous prizes, the ranking between x∗
c and x∗

r
depends entirely on the number of prizes available to contestants.
A reverse-lottery contest better incentivizes effort supply when
prizes are relatively scarce, i.e., when no more than half of
contenders can eventually be rewarded. However, the prediction
is reversed when prizes are abundant.

This result immediately sheds light on thewidely observed case
of winner-take-all contests. By Corollary 1, a winner-take-all prize
structure also maximizes total effort in reverse-lottery contests.
Theorem 8 leads to the following.

28 As we pointed out earlier, the two types of the contests (i.e., the conventional
and reverse nested lottery contests) converge if and only if I = 2.
Corollary 1. Under a winner-take-all prize structure, contestants
exert more effort in a reverse-lottery contest than in a conventional
lottery contest.

The logic behind the results in Theorem 8 can be interpreted
in light of the difference between the two hypothetical sequential
lottery procedures, which results from their different statistical
foundations. In a conventional lottery contest with L homogeneous
prizes and I contestants, one strives to improve the likelihood of
being picked within the first L lotteries (to get a prize V ). Only
the outcomes of the first L lotteries affect his payoffs. By contrast,
a contestant in a reverse-lottery contest strives to survive I − L
rounds of elimination to win a prize V . His payoff is affected by the
outcomes of the I − L draws. When L < I/2, we have I − L > L.
A contestant expects a higher marginal benefit from his effort in a
reverse-lottery contest than his counterpart in a conventional one:
One’s effort in the former could remain ‘‘effective’’ formore rounds
of lotteries than in the latter. Highermarginal benefits thus compel
contestants to contributemore effort. The same logic applies to the
opposite case of L > I/2 and I − L < L. In this case, one’s effort
‘‘expires’’ sooner in a reverse-lottery contest than in a conventional
lottery contest, which leads to x∗

r < x∗
c . In the knife-edge case

of L = I/2, the two types of contests must be equally effective
because I − L = L.

In a sequential-elimination contest, Rosen (1986) shows that
an extra large prize in the final stage are required to incentivize
stable (constant or increasing) effort supply along the hierarchical
ladder of the contest. Our setup differs critically from that of Rosen:
Rosen analyzes an n-stage contest in which surviving contestants
repeatedly exert effort when advancing toward the finale; we
instead study a static contest in which contestants make one-shot
effort. Despite the different setups, our result to some extent can be
related to that of Rosen: Under the hypothetical sequential loser-
selection procedure of the reverse lottery contest, the top prize
incentivizes contestants more than other prizes as players have to
survive I − 1 (hypothetical) rounds of elimination to attain it.

A more subtle comparison results when prizes are heteroge-
neous. The comparison reaches a definitive conclusion when the
number of prizes (L) is relatively small compared to the number of
contestants (I).

Theorem 9. Consider a contest with heterogeneous decreasing prizes
V1 ≥ V2 ≥ · · · ≥ VL > 0 and V1 > VL. A reverse-lottery contest
elicits more effort than its conventional lottery counterpart whenever
L ≤

I
2 , i.e. x

∗
r > x∗

c if L ≤
I
2 .

Proof. See Appendix B. �

Theorem 9 states that, with heterogeneous prizes, a reverse-
lottery contest continues to dominate a conventional lottery
contest when prizes are relatively scarce, i.e., when L ≤ I/2.
Furthermore, it implies that a conventional lottery contest could
elicit more effort only if prizes are abundant, i.e., when L > I/2.

The logic that underpins Theorem 8 continues to shed light on
Theorem 9. As aforementioned, one’s effort in a reverse-lottery
contest remains effective for more rounds of lotteries when prizes
are scarce, which leads to a highermarginal benefit for his bid than
its counterpart in a conventional lottery contest. Heterogeneous
prizes amplify the additional incentives in a reverse-lottery
contest. With homogeneous prizes, no additional benefit can be
expected once one survives the first I − L draws, while with
heterogeneous prizes, one would be compelled to survive more
rounds to receive larger prizes. Themore rewarding the top prizes,
the stronger this incentive effect. However, heterogeneous prizes
cannot create this incentive effect in a conventional lottery contest,
in which top prizes are given away in early lotteries and the
marginal benefit for one’s effort vanishes as the process continues.
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Because of this logic, a reverse-lottery contest tends to
incentivize contestants better under heterogeneous prize. The
effort comparison under heterogeneous prizes depends sensitively
on the prevailing prize structure and the number of contestants,
which prevents us from drawing a more definitive conclusion.
However, the condition of Theorem 9 is clearly not necessary for
the dominance of reverse-lottery contests.With strictly decreasing
prizes, even when L > I

2 , a reverse-lottery contest could induce
more effort. The following example illustrates this remark.

Example 1. Consider a contest with three contestants. Let the
prize sequence be the ordered set (3, 1, 0). In this case, L(= 2) >
I
2 (=

3
2 ). In a conventional lottery contest, each contestant exerts

an effort x∗
c = H−1( 1

3

3
k=1[Vk(1−

k−1
g=0

1
3−g )]) = H−1( 1

3 [3×(1−

1
3 ) + 1 × (1 −

1
3 −

1
2 )]) = H−1( 13

18 ). In a reverse-lottery contest,
each contestant exerts an effort x∗

r = H−1( 1
3

3
k=1[Vk(−1 +3−k

g=0
1

3−g )]) = H−1( 1
3 [3× (−1+

1
3 +

1
2 + 1)+ (−1+

1
3 +

1
2 )]) =

H−1( 14
18 ). Hence, x

∗
c < x∗

r .

5. Concluding remarks

We have proposed an alternative multi-prize contest model
that can be viewed as the mirror image of the nested lottery
contest of Clark and Riis (1996a), which we label a reverse
nested lottery contest. The model is shown to be underpinned
by a unique noisy-ranking system. Its statistical nature allows us
to interpret it as a worst-shot contest, in which a contestant’s
performance is determined by the least favorable shock realized
to his performance and he is compelled to expend effort to
improve the reliability of his performance. This novel contest
model depicts a set of competitive activities that are not addressed
by a conventional framework (e.g., conventional lottery contests),
and it provides a plausible and handy approach for modeling these
competitions.

The equilibrium of a reverse-lottery contest is characterized in
a symmetric setting. The results immediately shed light on the
optimal prize allocation in a reverse-lottery contest. We further
compare the equilibrium behavior to that in a conventional lottery
contest. The comparison reveals the ramifications of the different
competitive environments on contestants’ incentives to exert
effort.

The reverse-lotterymodel provides an alternative framework to
model multi-prize contests, and leaves abundant room for future
extension and applications. For instance, existing insight on the
optimal design of multi-stage elimination contests obtained in
conventional contest settings (e.g. Gradstein andKonrad, 1999, and
Fu and Lu, 2012a)29 can be reexamined in a setting of reverse-
lottery contests, as well as understanding of the optimal division
(or aggregation) of multi-prize contests (e.g. Fu and Lu, 2009). In
addition, the axiomatic foundation for the ratio-formCEF proposed
in this paper merits serious study. The methodology of Skaperdas
(1996) and Clark and Riis (1997) can be adopted for this purpose.

Appendix A

In this Appendix, we establish the results of Section 2 by linking
the noisy-ranking (minimum) contest model (4) to that of Fu and
Lu (2012b) as the mirror-image of their noisy-ranking (maximum)

29 They show that under concave contest technology, a multi-stage contest out-
performs a single-stage contest. However, our preliminary analysis demonstrates
that a single-stage contestmay dominate amulti-stage contest under plausible con-
ditions. A more comprehensive analysis will be conducted and presented in a sep-
arate study.
contest model.30 In Fu and Lu (2012b), an identical analytical
framework of (4) is adopted. However, they adopt an additive noise
term which instead follows a Type-I extreme value (maximum)
distribution.

Let us first restate the main results of Fu and Lu (2012b),
which are utilized as a benchmark in subsequent analysis. To
create a direct link between the two noisy-ranking models, we
use the same set of notations when restating Fu and Lu’s results.
Specifically, let x denote the effort entries of all contestants, and
g denote the set of deterministic output functions. Further, let the
sequence {ik}Ik=1 denote a complete ranking of the I contestants
according to their performance, where ik is the contestant being
ranked in the kth position (with kth highest perceived output
under descending-order ranking rule), and is awarded prize Vk
accordingly.

The following obtains in Fu and Lu (2012b)when the noise term
follows a Type-I extreme value (maximum) distribution.

Lemma A0 (Fu and Lu, 2012b).

(a) For any given x ≥ 0 such that


j∈I gj(xj) > 0, the ex ante
likelihood that a contestant i will achieve the top rank is

p(i|x) =
gi(xi)

j∈I
gj(xj)

, ∀i ∈ I. (17)

(b) For any given effort entries x ≥ 0 such that gi(xi) > 0, ∀i ∈ I , the
ex ante likelihood of any complete ranking outcome {ik}Ik=1 can be
expressed as

p({ik}Ik=1) = Π I
k=1

gik(xik)
I

k′=k
gik′ (xik′ )

. (18)

Lemma A0(a) is due to McFadden (1973, 1974). Furthermore,
following Yellott (1977), Fu and Lu (2012b) establish that with I ≥

3, the stochastic ranking outcomes of (17) and (18) would result
if and only if the noise term εi in their noisy performance ranking
model follows a Type-I extreme value (maximum) distribution.

The following fact must be noted:

(4) ⇒ − log(yi) = − log(gi(xi)) + (−εi)

⇒ log(y−1
i ) = log(gi(xi)−1) + (−εi). (19)

Hence, ranking contestants descendingly by log(yi) in themodel (4)
is equivalent to an alternative contest model

log(yi) = log(g i(xi)) + εi, (20)

where contestants are ranked by log(yi) ascendingly, with yi =

y−1
i , g i(xi) = [gi(xi)]−1 and εi = −εi. Three important statistical

facts are established immediately.

Lemma A1. Consider a given set of effort entries x. The ex ante
likelihood of a contestant i’s output log(yi) being ranked descendingly
in the top jth position in the noisy-ranking (minimum) contest
model (4) is equal to the likelihood of his corresponding output log(yi)
in (20) being ranked descendingly in the top (I − j + 1)th position.

Lemma A1 can be interpreted intuitively. Ranking log(yi) in (4)
descendingly is equivalent to ranking log(yi) in (20) ascendingly.
Hence, for a given x, when log(yi) is ranked in the top jth position

30 While all results in this section can be directly shown, deriving them indirectly
through the linkage to Fu and Lu (2012b) allows us to utilize their existing results.
Besides analytical efficiency, linking the two models helps to stress the statistical
connection and difference between the two paradigms.
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descendingly, the corresponding output log(yi) in (20)must obtain
the same rank when log(yi)s are ranked ascendingly. The top jth
rank, however, would become the bottom jth rank, or the top
(I − j + 1)th rank, if the ranking rule is turned upside-down, i.e.,
when log(yi)s are ranked descendingly.

Again, let the sequence {ik}Ik=1 denote a complete ranking of
the I contestants according to their performance yi, where ik is the
contestant in the kth position according the particular ranking rule
of the corresponding model.

Lemma A2. Consider a given set of effort entries x. The ex ante
likelihood of a complete ranking outcome {ik}Ik=1 in model (4),
with log(yi) being ranked descendingly, is equal to that of a
ranking outcome {i′k}

I
k=1 in model (20), with log(yi) being ranked

descendingly, i′k being the contestant in the kth position, and i′k =

iI+1−k.

Lemma A2 iterates the statistical relation between model (4)
andmodel (20). Let us illustrate it with a simple example with four
contestants, indexed by i = 1, 2, 3, 4. Consider a given set of effort
entries x. A ranking outcome {1, 3, 4, 2} inmodel (4),when log(yi)s
are ranked descendingly, would occur with the same probability
as a ranking outcome {2, 4, 3, 1} in model (20), when log(yi) are
ranked descendingly. Intuitively, under descending-order ranking
rule, models (4) and (20) are mirror images to each other. The next
fact links model (20) to Fu and Lu (2012b).

Lemma A3. If εi follows a Type-I extreme value (minimum)
distribution, then εi(= −εi) must follow a Type-I extreme value
(maximum) distribution.
Proof. Note that when a variable t follows a Type-I extreme value
(maximum) distribution, the c.d.f. is

F(t) = e−e−t
, t ∈ (−∞, +∞). (21)

DefineG(·) as the distribution function of ε, weprove LemmaA3
by showing G(ε) is exactly the distribution function of a variable
following a Type-I extreme value (maximum) distribution.

G(ε) = Pr(εi ≤ ε) = 1 − Pr(εi ≥ ε).

Due to εi = −εi, the probability of εi ≥ ε is the same with the
probability of εi ≤ −ε, then

G(ε) = 1 − Pr(εi ≤ −ε)

= 1 − F(−ε). (22)

Because εi follows a Type-I extreme value (minimum) distribution,
using (5) we write

F(−ε) = 1 − e−e−ε
. (23)

Substituting (23) into (22), we derive

G(ε) = 1 − (1 − e−e−ε
)

= e−e−ε
. (24)

(24) is equivalent to (21), which completes the proof. �

As εi follows a Type-I extreme value (maximum) distribution,
the noisy-ranking (minimum) model (4) is transformed into a
noisy-ranking (maximum) contest model (20) with a set of output
functions ḡ = (g1(x1)−1, . . . , gI(xI)−1). Model (20) with an
ascending-order ranking rule, simply boils down to that of Fu and
Lu (2012b)with output functions ḡ and adescending-order ranking
rule.31

31 To put it more precisely, (20) is different from a typical output function in a
noisy-ranking (maximum) contest model defined by Fu and Lu (2012b). The output
function gi(xi) is decreasing in xi . However, it does not change Fu and Lu’s (2012b)
technical results on the likelihoods of stochastic ranking outcomes for given effort
entries x.
These facts allow us to borrow directly from Fu and Lu (2012b)
the entire set of analytical results. The noisy-ranking (minimum)
model (4) boils down to a mirror image of the noisy-ranking
(maximum) model of Fu and Lu (2012b). For given effort entries x
and output functions g, one’s output log(yi) in the noisy-ranking
(minimum) model (4) being ranked descendingly in the top jth
position, must be the same as its counterpart of log(yi) in a
noisy-ranking (maximum) model (Fu and Lu, 2012b) being ranked
descendingly in the top (I − j + 1)th position (or the bottom jth
position).

Theorems 1 and 2 are apparent due to Lemmas A0–A3.
Theorem 3 obtains due to the mirror image relation established
above and the uniqueness of noise distribution in the conventional
nested lottery contest.32

Appendix B

Proofs of Theorems 5 and 6. The proof begins with a general
case, and then proceeds to a winner-take-all case.

In a symmetric pure-strategy equilibrium (SPSE) of reverse-
lottery model with I players, given everyone else exerting
equilibrium effort y, player i considers exerting effort ei, his
expected utility can be expressed as

EUi =
e−r
i

e−r
i + (I − 1)y−r

VI

+
(I − 1)y−re−r

i

[e−r
i + (I − 1)y−r ][e−r

i + (I − 2)y−r ]
VI−1 + · · ·

+
(I − 1)(I − 2) . . . (I − t)y−tre−r

i

[e−r
i + (I − 1)y−r ][e−r

i + (I − 2)y−r ] . . . [e−r
i + (I − t − 1)y−r ]

VI−t + · · ·

+
(I − 1)(I − 2) . . . 1 × y−(I−1)re−r

i

[e−r
i + (I − 1)y−r ][e−r

i + (I − 2)y−r ] . . . [e−r
i + y−r ]e−r

i
V1 − ei.

Defining λ =
e−r
i

y−r , where y is the equilibrium effort if a SPSE exists
and

y =
r
I

I
i=1


−1 +

i−1
t=0

1
I − t


VI−i+1, (25)

which can be derived straightforwardly from Theorem 7. Then EUi
can be expressed as:

EUi =
λ

λ + (I − 1)
VI +

(I − 1)λ
[λ + (I − 1)][λ + (I − 2)]

VI−1 + · · ·

+
(I − 1)(I − 2) . . . (I − t)λ

[λ + (I − 1)][λ + (I − 2)] . . . [λ + (I − t − 1)]
VI−t

+ · · · +
(I − 1)(I − 2) . . . 1 × λ

[λ + (I − 1)][λ + (I − 2)] . . . [λ + 1]
V1 − ei.

As λ =
e−r
i

y−r , we get ei = λ−
1
r y.33 Mathematically, EUi can be

written in the following form:

EUi =
1
I

I
i=1

VI−i+1


λ

i−1
t=0

I − t
I − t + λ − 1



− r


−1 +

i−1
t=0

1
I − t


λ−

1
r


, (26)

32 Please refer to Theorem 2 in Fu and Lu (2012b) for details.
33 Notice that λ can also be expressed as λ = (x/ei)r , thus when ei increases from
0 to +∞, λ decreases from +∞ to 0 accordingly.
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which can also be expressed as

EUi =
1
I

I
i=1

bI−i+1 × VI−i+1, where (27)

bI−i+1 = λ

i−1
t=0

I − t
I − t + λ − 1

− r


−1 +

i−1
t=0

1
I − t


λ−

1
r . (28)

Hence, the expected utility EUi is a function of λ. Using

∂

∂λ

i−1
t=0

I − t
I − t + λ − 1

= −


i−1
t=0

I − t
I − t + λ − 1


i−1
t=0

1
I − t + λ − 1


, (29)

∂

∂λ

i−1
t=0

λ

I − t + λ − 1
=


i−1
t=0

1
I − t + λ − 1



− λ

i−1
t=0


1

I − t + λ − 1

2

, (30)

we derive the first and second order conditions for a local maxi-
mum:

∂EUi

∂λ
=

1
I

I
i=1

VI−i+1

×


−


i−1
t=0

I − t
I − t + λ − 1


−1 +

i−1
t=0

λ

I − t + λ − 1



+


−1 +

i−1
t=0

1
I − t


λ−

1
r −1


= 0; (31)

∂2EUi

∂λ2
=

1
I

I
i=1

VI−i+1


i−1
t=0

I − t
I − t + λ − 1



×


i−1
t=0

1
I − t + λ − 1


−1 +

i−1
t=0

λ

I − t + λ − 1



+


i−1
t=0

I − t
I − t + λ − 1



×


−


i−1
t=0

1
I − t + λ − 1


+ λ

i−1
t=0


1

I − t + λ − 1

2


−


1
r

+ 1


−1 +

i−1
t=0

1
I − t


λ−

1
r −2


. (32)

Substituting (31) into (32), we derive

∂2EUi

∂λ2

 ∂EUi
∂λ

=0
=

1
I

I
i=1

VI−i+1
1
λ


i−1
t=0

I − t
I − t + λ − 1



×


−1 +

i−1
t=0

λ

I − t + λ − 1



×




−1 +

i−1
t=0

λ

I − t + λ − 1


−

1
r

−

i−1
t=0

λ
I−t+λ−1


1 −

λ
I−t+λ−1


−1 +

i−1
t=0

λ
I−t+λ−1

 . (33)

It can be verified that λ = 1 satisfies the first order condition. So
the point λ = 1 is a local maximum if ∂2EUi

∂λ2
|λ=1 < 0, which holds

if and only if

r <

I
i=1

VI−i+1


−1 +

i−1
t=0

1
I−t


I

i=1
VI−i+1


−1 +

i−1
t=0

1
I−t

2

−

i−1
t=0

1
I−t


1 −

1
I−t


= r soc (34)

if the denominator of r soc is positive, and r > 0 when the denom-
inator is negative.34

Participation constraint requires

EUi =
1
I

I
i=1

VI−i+1 −
r
I

I
i=1

VI−i+1


−1 +

i−1
t=0

1
I − t


≥ 0,

which follows that

r ≤

I
i=1

VI−i+1

I
i=1

VI−i+1


−1 +

i−1
t=0

1
I−t

 = rpc . (35)

Consider a single element bI−i+1 which is given by (28). Let k be
the minimal value of k such that

k
t=0

1
I−t > 1, which follows that

k ≈ 0.632I . When I − i+ 1 ≤ I − k+ 1, i.e., i ≥ k, it can be shown
that every bI−i+1, with bI−i+1(λ = 1) ≥ 0, is maximized at λ = 1
globally as long as r satisfies condition (C1) in Theorem 6.35 The
proof is as follows.

First, it is straightforward to verify that λ = 1 is a local max-
imum for bI−i+1. Next, we show that when r ≤

1
I−1 , there exists

at most one local maximum, then λ = 1 must be a global maxi-
mumwith participation constraint holding. Assume that there ex-
ists more than one local maximum, consider any two local maxi-
mums, denote the higher value of λ that is a local maximum by λ′,
and the lower one by λ′′. From (26), we can see that EUi is a contin-
uous functionwith respect to λ, then between the twomaximums,
there must exist at least one local minimum, say λ = λmin where
λ′′ < λmin < λ′. At any critical point with ∂bI−i+1

∂λ
= 0, using (31)

and (33), we derive

∂bI−i+1

∂λ
= −


i−1
t=0

I − t
I − t + λ − 1


−1 +

i−1
t=0

λ

I − t + λ − 1



+


−1 +

i−1
t=0

1
I − t


λ−

1
r −1. (36)

∂2bI−i+1

∂λ2

 ∂bI−i+1
∂λ

=0

=
1
λ


i−1
t=0

I − t
I − t + λ − 1


−1 +

i−1
t=0

λ

I − t + λ − 1


  

first term

34 Notice that the numerator of r soc is always bigger than zero as
n

i=1

Vn−i+1(−1+
i−1

t=0
1

n−t ) = y > 0, so r soc is positive/negativewhen the denominator
is positive/negative.
35 Notice that bI−i+1 with i ≥ k can also be expressed as bl with l ≤ I − k + 1.



Q. Fu et al. / Journal of Mathematical Economics 50 (2014) 128–140 137
×




−1 +

i−1
t=0

λ

I − t + λ − 1


−

1
r  

part I

−

i−1
t=0

λ(I−t−1)
(I−t+λ−1)2

−1 +

i−1
t=0

λ
I−t+λ−1


  

part II


  

second term

. (37)

When ∂EUi
∂λ

= 0, from (36) we derive that −1 +
i−1

t=0
λ

I−t+λ−1 > 0
due to the fact that −1 +

i−1
t=0

1
I−t > 0 for all i ≥ k, otherwise

(36) cannot be zero. As λ ∈ (0, +∞) and using

∂

∂λ

i−1
t=0

λ

I − t + λ − 1
=

i−1
t=0

I − t − 1
(I − t + λ − 1)2

≥ 0, (38)

we derive that part I in (37) approaches itsmaximum as λ → +∞,
which is

lim
λ→+∞


−1 +

i−1
t=0

λ

I − t + λ − 1


= i − 1.

Therefore, for all i ≥ k, we have 0 < −1 +
i−1

t=0
λ

I−t+λ−1 <

I − 1. Then when 1
r ≥ I − 1, part I in (37) is negative, then

(37) must be negative as part II in (37) is negative. This implies
that ∂2bI−i+1

∂λ2
|λ=λmin < 0, which contradicts our assumption that

λ = λmin is a local minimum.
Now we show that when the prizes are weakly decreasing,

rpc > 1
I−1 , where rpc is given by (35). As prizes are weakly decreas-

ing, letΓ =
I

i=1 VI−i+1, we can see that in the denominator of rpc ,
the coefficient (−1+

i−1
t=0

1
I−t ) is increasing with the order of the

prize, thus the coefficient of the first prize V1 is (−1 +
I−1

t=0
1

I−t )

which is the largest among all coefficients, so any rpc with decreas-
ing prizes must be larger than or equal to the rpc with a single first
prize V1 = Γ . Then we derive

rpc ≥
Γ

Γ


−1 +

I−1
t=0

1
I−t

 =
1

−1 +

I−1
t=0

1
I−t

. (39)

As
I−1

t=0
1

I−t < I , thus from (39), we have rpc > 1
I−1 , which implies

that participation constraint must be satisfied when r ≤
1

I−1 .
Next, we show that when r ≤

1
I−1 , we must have r soc > 1

I−1
when r soc is positive.36 By (34), we derive that when the denomi-
nator of r soc is positive,

r soc >

I
i=1

VI−i+1


−1 +

i−1
t=0

1
I−t


I

i=1
VI−i+1


−1 +

i−1
t=0

1
I−t

2 . (40)

As (−1+
i−1

t=0
1

I−t ) is increasing in i andprizes areweakly decreas-
ing, following similar arguments as thosewhen showing rpc > 1

I−1 ,
we further derive

r soc >

Γ


−1 +

I−1
t=0

1
I−t


Γ


−1 +

I−1
t=0

1
I−t

2 =
1

−1 +

I−1
t=0

1
I−t

>
1

I − 1
.

36 When r soc is negative, we only need r > 0 to ensure λ = 1 is a local maximum.
Therefore, the second order condition for a local maximum at λ =

1 must be satisfied when r ≤
1

I−1 .
Finally, we can conclude that under conditions (C1) and (C2) in

Theorem 6, every bI−i+1 is globally maximized at λ = 1 as it is the
only local maximum with participation constraint holding. As EUi
is a weighted sum of the bI−i+1 functions, therefore, EUi is maxi-
mized at λ = 1 when every bI−i+1 is maximized.

We now proceed to the winner-take-all case.
From (26), we write EUi =

1
I b1V1, where

b1 = λ

I−1
t=0

I − t
I − t + λ − 1

− r


−1 +

I−1
t=0

1
I − t


λ−

1
r . (41)

It is clear that maximizing EUi is equivalent to maximizing b1.
Hence, the expected utility is expressed as a function of λ. From
(36) and (37), the first and second order conditions for a local max-
imum are:

∂b1
∂λ

= −


I−1
t=0

I − t
I − t + λ − 1


−1 +

I−1
t=0

λ

I − t + λ − 1



+


−1 +

I−1
t=0

1
I − t


λ−

1
r −1

= 0; (42)

∂2b1
∂λ2

 ∂b1
∂λ

=0
=

1
λ

I−1
t=0

I − t
I − t + λ − 1


−1 +

I−1
t=0

λ

I − t + λ − 1


  

first term

×




−1 +

I−1
t=0

λ

I − t + λ − 1


−

1
r

−

I−1
t=0

λ(I−t−1)
(I−t+λ−1)2

−1 +

I−1
t=0

λ
I−t+λ−1




  
second term

. (43)

It can be verified that λ = 1 satisfies the first order condition. So
the point λ = 1 is a local maximum if ∂2b1

∂λ2
|λ=1 < 0, which holds if

and only if

r <

−1 +

I−1
t=0

1
I−t

−1 +

I−1
t=0

1
I−t

2

−

I−1
t=0

1
I−t


1 −

1
I−t

 = r soc (44)

if the denominator of r soc is positive, and r > 0 when the denomi-
nator is negative. When the above condition holds, λ = 1 is a local
maximum.

Next, we show that as long as the participation constraint holds,
i.e., b1(λ = 1) ≥ 0, it is necessary and sufficient to show λ = 1 is
a global maximum. At any λ > 0, participation constraint requires

b1 = λ

I−1
t=0

I − t
I − t + λ − 1

− r


−1 +

I−1
t=0

1
I − t


λ−

1
r ≥ 0

⇒

I−1
t=0

I − t
I − t + λ − 1

≥ r


−1 +

I−1
t=0

1
I − t


λ−

1
r −1. (45)

Assume that with participation constraint holding, there exists
more than one local maximum, and denote the highest value of
λ that is a local maximum by λ′. In a critical point with ∂b1

∂λ
= 0, by

(42) we write

I−1
t=0

I − t
I − t + λ − 1


−1 +

I−1
t=0

λ

I − t + λ − 1



=


−1 +

I−1
t=0

1
I − t


λ−

1
r −1. (46)
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From (45) and (46), we derive that with participation constraint
holding, at the local maximum λ = λ′,

1
r

≥


−1 +

I−1
t=0

λ′

I − t + λ′ − 1


. (47)

Assume with participation constraint holding, there exists
another local maximum at λ′′ < λ′. From (45) we can see b1 is
a continuous function with respect to λ, then between the two
maximums, there must exist at least one local minimum, say λ =

λmin whereλ′′ < λmin < λ′. Thenwemust have ∂b1
∂λ

|λ=λmin = 0 and
∂2b1
∂λ2

|λ=λmin > 0. However, as λmin < λ′, using (43) and the fact that

∂

∂λ

i−1
t=0

λ

I − t + λ − 1
=

i−1
t=0

I − t − 1
(I − t + λ − 1)2

> 0, (48)

we derive

1
r

≥


−1 +

I−1
t=0

λ′

I − t + λ′ − 1



≥ −1 +

I−1
t=0

λmin

I − t + λmin − 1
,

which implies that the second term in (43) is negative at λ = λmin.
This contradicts the initial assumption that λ = λmin is a localmin-
imum, which indicates that there exists at most one local maxi-
mum with the participation constraint holding.

At λ = 1, using (45), participation constraint requires r ≤ rpc
where

rpc =
1

−1 +

I−1
t=0

1
I−t

 . (49)

By comparing r soc and rpc , which are given by (44) and (49) respec-
tively, it is straightforward to show rpc < r soc when r soc is positive.
When r soc is negative, we only need r > 0 to ensure λ = 1 is a
local maximum. Therefore, we are safe to conclude r ≤ rpc is a
sufficient condition to ensure the existence of a SPSE in a winner-
take-all reverse-lottery contest.

Proof of Theorem 7. Again, we obtain the solution to symmetric
equilibrium by utilizing existing results from its ‘‘mirror image’’,
i.e., conventional lottery contestmodels (Clark andRiis, 1996a).We
first state the following fact.

Lemma A4. A reverse nested lottery contestwith (weakly) decreasing
prizes Vk, k = 1, 2, . . . , I and increasing impact functions gi(·) =

g(·), ∀i ∈ I, is strategically equivalent to a nested lottery contest
of Clark and Riis (1996a) with (weakly) increasing prizes Ṽk, k =

1, 2, . . . , I and decreasing impact functions g̃i(·), i = 1, 2, . . . , I ,
with Ṽk = VI+1−k, k = 1, 2, . . . , I and g̃i(·) = g̃(·) = [g(·)]−1,
∀i ∈ I.

Lemma A4 simply follows from the fact that the two contest
models are inverse to each other, which was stated more formally
by Lemma A1. We apply the equilibrium solution of Fu and Lu
(2009) for the nested lottery contest (which is restated in Lemma 1
in this paper), and replace each Vk by VI+1−k in (15).We obtain that
in a symmetric equilibrium of the strategically equivalent lottery
contest the following must hold:

g(x∗)g ′
(x∗)

=
1
I

I
k=1


VI+1−k


1 −

k−1
j=0

1
I − j


.

Further note g̃(·)
g̃ ′(·)

= −
g(·)
g ′(·)

. We then have

H(x∗) =
g(x∗)

g ′(x∗)
=

1
I

I
k=1


−VI+1−k


1 −

k−1
j=0

1
I − j


,

which leads to the claim of Theorem 7.
Proof of Theorem 8. The number of the contestants I(≥3) can be
even or odd. Hence, we consider the following two cases: I = 2n
and I = 2n + 1, where n is a positive integer, i.e., n can be any
positive integer.

In both cases when I = 2n and I = 2n + 1, when L = n,
using (13), (14), (15), (16) andRemark 1,we can see that comparing
x∗
c and x∗

r is equivalent to comparing
n

k=1 ck and
n

k=1(−cI+1−k)
where

ck = 1 −

k−1
g=0

1
I − g

.

We can derive that x∗
r > x∗

c if and only if
n

k=1

(−cI+1−k) −

n
k=1

ck =

n
k=1

dk > 0,

where

dk =


−1 +

I−k
j=0

1
I − j


−


1 −

k−1
i=0

1
I − i


. (50)

Using (50), we can further derive:

d1 =
1
I

+


1
I

+
1

I − 1
+ · · · +

1
2


− 1 > 0 for all I ≥ 3;

dk − dk−1 =


1

I − (k − 1)
−

1
k − 1


< 0

as I > 2(n − 1) ≥ 2(k − 1).

dn =


−1 +

1
I

+ · · · +
1
n


−


1 −

1
I

− · · · −
1

I − (n − 1)


. (51)

It is easy to verify that when n = 1 or n = 2, Theorem 8
holds.37 Next, we are going to prove that Theorem 8 holds in
general for all n ≥ 3.

First, we seek to determine the sign of dn. When I = 2n, (51)
becomes

dn =


−1 +

1
2n

+ · · · +
1

n + 1
+

1
n


−


1 −

1
2n

− · · · −
1

n + 1


= 2


1
2n

+ · · · +
1
n


− 1


−

1
n
; (52)

when I = 2n + 1, (51) becomes

dn =


−1 +

1
2n + 1

+ · · · +
1
n


−


1 −

1
2n + 1

− · · · −
1

n + 2


= 2


1
2n

+ · · · +
1
n


− 1


−

2n2
+ 2n + 1

n(n + 1)(2n + 1)
. (53)

37 Notice that I = 3 when n = 1 (recall that here we do not consider the case
I = 2), while when n = 2, I = 4 or I = 5.
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In the following, we show that when n ≥ 3,
1
2n

+ · · · +
1
n


< 1. (54)

When n = 3, (54) holds since 1/6 + 1/5 + 1/4 + 1/3 − 1 =

−1/20 < 0. When n increases from t to t + 1 where t ≥ 3, LHS of
(54) will increase by

1
2t + 2

+
1

2t + 1
−

1
t

= −
3t + 2

2t(t + 1)(2t + 1)
< 0.

Thus, for all n ≥ 3, (54) holds, which implies (52) < 0 and (53)
< 0, i.e., dn < 0.

Up to now, we have shown that: for all n ≥ 3, when k gets
larger, dk decreases from d1 > 0 to dn < 0. When I = 2n,

n
k=1

dk =

n
k=1


−1 +

2n−k
j=0

1
2n − j


−


1 −

k−1
i=0

1
2n − i



= −


n

k=1

c2n−k+1 +

n
k=1

ck



= −


2n

k=n+1

ck +

n
k=1

ck



= −

2n
k=1

ck = −

I
k=1

ck.

When I = 2n + 1,

n
k=1

dk =

n
k=1


−1 +

2n+1−k
j=0

1
2n + 1 − j



−


1 −

k−1
i=0

1
2n + 1 − i



= −


n

k=1

c2n−k+2 +

n
k=1

ck



= −


2n+1
k=n+2

ck +

n
k=1

ck



= −


2n+1
k=1

ck − cn+1



= −

I
k=1

ck + cn+1;

n+1
k=1

dk =

n+1
k=1


−1 +

2n+1−k
j=0

1
2n + 1 − j



−


1 −

k−1
i=0

1
2n + 1 − i



= −


n+1
k=1

c2n−k+2 +

n+1
k=1

ck



= −


2n+1
k=n+1

ck +

n+1
k=1

ck



= −


2n+1
k=1

ck


+ cn+1



= −

I
k=1

ck − cn+1.
Notice that
I

k=1

ck =


1 −

1
I


+


1 −

1
I

−
1

I − 1


+ · · · +


1 −

1
I

− · · · −
1
2

− 1


= I − I

1
I


− (I − 1)


1

I − 1


− · · · − 2


1
2


− 1

= 0;

when I = 2n + 1,

cn+1 = 1 −

n
g=0

1
2n + 1 − g

= 1 −


1

2n + 1
+

1
2n

+ · · · +
1

n + 1


=

n + 1
(2n + 1)n

+


1 −


1
2n

+ · · · +
1
n


> 0,

since (54) holds for all n ≥ 3.
Hence, when I = 2n,

n
k=1 dk = −

I
k=1 ck = 0. Becausen

k=1 dk = 0, dk decreases as k increases, and dn < 0, we can
further derive that when L <, > n,

L
k=1 dk >, < 0. When I =

2n + 1,
n

k=1

dk = −

I
k=1

ck + cn+1 = cn+1 > 0,

n+1
k=1

dk = −

I
k=1

ck − cn+1 = −cn+1 < 0.

With dk decreasing when k gets larger, we can further derive that
when L <, > n,

L
k=1 dk >, < 0. In summary,

L
k=1 dk = 0 only

when I = 2n and L = n, i.e., (ii) holds; when L <, > n,
L

k=1 dk >
, < 0 in both cases where I = 2n and I = 2n + 1, i.e., (i) holds no
matter whether I is even or odd.

Proof of Theorem 9. Again, we consider two cases which depend
on I being even or odd: When I = 2n, L ≤ I/2 = n; when
I = 2n+1, L ≤ I/2 = n+

1
2 , i.e., L ≤ n. In either case, themaximal

L is n. From the proof of Theorem 8, we can see that whenever
I = 2n or I = 2n + 1, we always have

n
k=1 dk ≥ 0 for all n ≥ 3,

which further implies
n

k=1(Vkdk) > 0 since Vk is decreasing with
k, i.e., when L = n, x∗

r > x∗
c for n ≥ 3. It is simple to show thatwhen

I = 3 (n = 1), I = 4 (n = 2) and I = 5 (n = 2), x∗
r > x∗

c . Hence, the
following can be concluded: For all cases with I ≥ 3, when L = n,
we always have x∗

r > x∗
c . This result can be generalized to all cases

where L ≤ n since L < n are just special cases of L = nwith one or
several bottom prizes being zero, which completes the proof.
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