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Abstract. We address the problem of poor portfolio performance when a minimum-
variance portfolio is constructed using the sample estimates. Estimation errors are mostly
blamed for the poor portfolio performance. However, we argue that even small unbiased
estimation errors can lead to significantly bad performance because the optimization step
amplifies errors, in a nonsymmetric way. Instead of trying to independently improve
the estimation step or fix the optimization step for robustness, we disentangle the well-
estimated aspects from the poorly estimated aspects of the covariance matrix. By using a
single parameter held constant over all data sets and time periods, our method achieves
excellent performance both empirically and in the simulation. We also show how to use
information from the sample mean to construct mean-variance portfolios that have higher
out-of-sample Sharpe ratios.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2019.1858.

1. Introduction
The celebrated mean-variance portfolio-optimization
approach proposed by Markowitz (1952) lays out a
clear methodology for constructing asset portfolios
that minimize risk, for any performance/reward tar-
get. His seminal work helped to initiate an era for the
mathematical analysis of financial problems. How-
ever, the out-of-sample performance of these mean-
variance portfolios in the real world is often unac-
ceptable (Jobson and Korkie 1981; Frost and Savarino
1986, 1988; Jorion 1986; Michaud 1989). This poor
performance stems largely from an inability to make
precise parameter estimates. Even the simpler variance-
minimizing portfolio often has a similarly unacceptable
performance (Jagannathan and Ma 2003, DeMiguel
et al. 2009a).

The most direct way to solve the minimum-variance
(Min-Var) portfolio problem involves two steps. First,
we find the best estimates of the covariance matrix
using historical data. Next, we use these estimates as
inputs to the optimization problem and solve it to
obtain a portfolio. Both steps are relatively straight-
forward. However, even the best covariance estima-
tion in the first step, although unbiased, has errors.
When we use this estimate in place of the true co-
variance matrix, the hope is that the resulting port-
folio is still close to the optimal portfolio. However,
this is not the case. The large number of covariance
estimates relative to the limited size of historical data
often is blamed for this poor result. But, aswe argue in

this paper, the initial error stemming from limited
data is amplified by the structure of the optimization
procedure itself.
A plethora of research papers suggest ways to ad-

dress this poor out-of-sample performance. Either
these papers try to improve the first estimation step to
yield better covariance estimates or modify the second
optimization step to produce a better out-of-sample
performance (see Section 2). However, DeMiguel et al.
(2009a) examine 14 popular methods in terms of their
Sharpe ratio, certainty-equivalent return, and turn-
over and find that none of the methods consistently
outperforms the naı̈ve equally weighted portfolio.
Better results are obtained on many real-world fi-
nancial data sets by using norm-constrained portfolios
(Brodie et al. 2009, DeMiguel et al. 2009b, Fan et al.
2012). Instead of just minimizing portfolio variance,
the norm-constrained portfolios seek to minimize a
weighted sum of the portfolio variance and a norm
of the portfolio weights. Covariance estimation errors
often manifest as large weights of some assets, and
penalizing portfolio weights limits this problem.
However, the norm-constrained approach presents

several problems, stemming primarily from the ad
hoc nature of merely modifying the objective to keep
the portfolio weights low. First, Green and Hollifield
(1992) argue that the optimal portfolio can have size-
able asset weights. Hence, although norm constraints
might help, they also might be wrong because they
exclude the optimal solution, which involves large
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portfolio weights. Second, the choice of the norm is ar-
bitrary. Third, the performance of the norm-constrained
portfolios depends on the selection of a parameter
that captures the importance of keeping the portfolio
weights low; that is, the coefficient of the norm. The
best parameter value depends on the particular finan-
cial data set and the amount of training data, and it
even changes over the time horizon of a data set. This
makes parameter tuning particularly important.

1.1. Our Main Ideas
In this paper, we argue that the compounding effect
of the optimization-driven error amplification on the
initial estimation errors is the primary cause of the
unacceptable performance. Indeed, this amplification
is in a sense nonsymmetric; that is, different kinds
of errors are amplified in different ways. Hence, the
unbiased initial estimation errors do not translate to the
unbiased estimates of the optimal portfolio. Instead of
trying to independently improve the estimation step or
fix the optimization step for robustness, we disentangle
the well-estimated aspects of the covariancematrix from
the poorly estimated and handle these appropriately
when constructing our portfolio.

Our approach has four steps. First, we examine the
estimation of the covariance matrix. It turns out that
some eigenvectors of the covariance matrix are easier
to estimate than others.1 This suggests the need to
split the set of eigenvectors into two groups: the well
estimated and the poorly estimated. However, in-
stead of splitting by using an arbitrary threshold on
estimation errors, we use the impact of the estimation
errors on the portfolio objective to dictate the split.
We call the split groups signal and noise.

Second, we construct a signal-only portfolio from
the well-estimated signal eigenvectors. This portfolio
by itself performs significantly better than the clas-
sical Min-Var portfolio obtained by plugging the sam-
ple covariance matrix into the Min-Var optimization
problem.

Third, realizing that “poorly estimated” does not
imply unimportant, we see how we can benefit from
the noise eigenvectors. Although each eigenvector in
the noise space is poorly estimated, we argue that,
when taken together, the space spanned by them is
well estimated. This phenomenon is understandable
because this space is orthogonal to the space spanned
by the signal eigenvectors. The orthogonality implies
that a portfolio from the noise space has the potential
to improve performance when combined with the
signal-only portfolio. We devise an upper bound on
the out-of-sample variance of any portfolio constructed
from these noisy eigenvectors and use this upper
bound to build a conservative noise-only portfolio.

Finally, we combine the signal-only portfolio with the
conservative noise-only portfolio to generate a single

portfolio that we call the bounded-noise portfolio.
Using simulated data and 12 standard data sets with
different rebalance frequencies and training lengths,
we show that the bounded-noise portfolio does well
not only in simulation but also on these real-worlddata
sets. Moreover, unlike norm-constrained portfolios, we
use the same value of the scalar threshold parameter
that defines the signal/noise split for all data sets. In
many ways, this property is critical because it ensures
that the out-of-sample performance does not rely on
one’s ability to fine-tune a very sensitive parameter.
In summary, we provide a mechanism to disen-

tangle signal from noise; construct the signal-only
portfolio and the conservative noise-only portfolio;
and combine the two to show that the resulting
portfolio significantly outperforms popular portfo-
lios in the literature. This entire process requires only
one easily interpretable parameter, whose value is
invariant to the financial data sets and to the length
and time of the training data.
We explore the performance of our methodology in

multiple ways: testing on both real-world and sim-
ulated data and providing mathematical justifications.
The performance in the real world is understandably
the ultimate prize. However, testing on simulated data
allows for exhaustive tests and keeps the focus on es-
timation errors alone. Understanding mathematically
why a method does well is reassuring and will enable
us to understand the method’s limitations, enabling
further improvement. Together, they help make a
strong case that we are not at the mercy of few sample
paths or being favored by certain data sets only.

1.2. Other Contributions
Mean-variance portfolios, as opposed to Min-Var port-
folios, also need to estimate the expected returns to
construct portfolios because of the expected return
target constraint. They are often considered more chal-
lenging to construct, especially because estimating the
expected return is harder than estimating the covari-
ance matrix (Merton 1980) and more essential (Black
and Litterman 1992,Chopra andZiemba 1993).Hence,
prior literature (Jagannathan andMa 2003, Brodie et al.
2009, DeMiguel et al. 2009b, Fan et al. 2012) hasmostly
focused on the Min-Var problem to bypass this issue.
However, expected returns are important drivers of the
Sharpe ratio. In Sections 5 and 7,we demonstrate how
our method can be extended to use information of
sample means to construct a mean-variance portfolio
with a significantly better out-of-sample Sharpe ratio
than the competing methods.
We also provide a detailed discussion on the re-

lation between ourmethod and the norm-constrained
methods. Our analysis shows that the best-performing
norm-constrained portfoliosmight correspond towrong
constraints, which could render the optimal portfolio
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infeasible. However, these wrong constraints indi-
rectly lead to portfolios with similar properties as our
bounded-noise portfolio.

1.3. Outline
The rest of the paper is organized as follows. Section 2
discusses related literature. In Section 3, we discuss
how certain estimation errors are amplified via the
optimization solver, which results in poor portfolio
performance. In Section 4, by mitigating the error
amplification, we construct the bounded-noise port-
folio. In Section 5, we demonstrate how to extend the
bounded-noise idea to maximizing the Sharpe ratio.
In Section 6, we detail relations to several existing
portfolio-optimization methods. In Section 7, we pro-
vide exhaustive comparisons of our portfolios with
eight other different portfolio-construction methods.
Concluding remarks are made in Section 8.

2. Literature Review
The Min-Var portfolio optimization is to find a
portfolio w that minimizes variance w′Σw subject to
the budget constraint w′1 � 1. Solving this optimi-
zation problem with the estimated covariance matrix
Σ̂ in place of the unknown true covariance Σ gives us
the estimated Min-Var portfolio in place of the true
Min-Var portfolio. The poor out-of-sample perfor-
mance of the estimatedMin-Var portfolio is well-known
(Jobson and Korkie 1981; Frost and Savarino 1986,
1988; Jorion 1986;Michaud 1989).Michaud (1989)was
the first to describe the original portfolio-optimization
framework as error maximization. He argues that the
solver overweighs those securities that have large esti-
mated returns, negative correlations, and small vari-
ance, which are most likely to have estimation errors.
Even the naı̈ve equally weighted portfolio that spreads
the budget equally among all assets performs better
(DeMiguel et al. 2009a). We can group the papers try-
ing to improve performance into three categories. The
first category tries to develop methods that provide
better covariance estimates than the sample covari-
ance matrix. In the second category, the estimated Min-
Var portfolio is combined with the equally weighted
portfolio to maximize a utility measure other than var-
iance. The third category includes modification of the
optimization problem itself with the hope of improv-
ing performance.

Improving Covariance Estimation. A plethora of re-
search exists on the estimation of the covariance
matrix in the context of portfolio optimization.2 One
common approach is to shrink the sample covariance.
Ledoit and Wolf (2003) shrink the sample covariance
matrix toward the single-index covariance matrix.
One can also shrink the eigenvalues of the sample
covariance matrix linearly (Ledoit and Wolf 2004) or

nonlinearly (Ledoit and Wolf 2012, 2017). The former
is equivalent to shrinking the sample covariance
matrix toward identity matrix. The shrinkage level is
chosen such that it is asymptotically optimal under
the Frobenius norm. The shrinkage methods have been
shown to dominate the multifactor models on the real-
worlddata (Ledoit andWolf 2003). A second approach
is to use robust statistics to counteract sudden move-
ments in the stock price. DeMiguel and Nogales (2009)
provide a careful evaluation on both simulated and
real-world data sets and show that the robust sta-
tistics can indeed improve performance. A third ap-
proach is to use the information from the option price
documented in DeMiguel et al. (2013b). They indicate
that using option-implied volatility can reduce the
out-of-sample standard deviation by more than 10%
for various modified Min-Var portfolios on two real-
world data sets.

Combining with the Equally Weighted Portfolio. The
second category is inspired by the good perfor-
mance of the equally weighted portfolio (Jobson and
Korkie 1980, DeMiguel et al. 2009a, Duchin and Levy
2009). With five reasonable assumptions, Frahm and
Memmel (2010) prove that the portfolio constructed
by carefully combining the estimated Min-Var port-
folio with any reference portfolio dominates the
former. They use a loss function that is closely related
to out-of-sample variance. In the extensive simulation
test and a small real-world data set evaluation, they
take the equally weighted portfolio as the reference
portfolio and demonstrate the benefit of the combi-
nation. By minimizing the expected utility loss, Tu
and Zhou (2011) estimate the combination level of
each of four different portfolios and the equally
weighted portfolio. Using an exhaustive assessment
of both the simulated and the real-world data sets,
they show that the new portfolios perform better
than the equally weighted portfolio. DeMiguel et al.
(2013a) use different criteria and calibration methods
to decide the combination level and show that the
combined portfolios can achieve good performance
across several real-world data sets.

Modifying the Optimization. In the third category, the
portfolio optimization is modified by penalizing port-
folios with some predefined characteristics (or, equiv-
alently, by adding extra constraints based on these
characteristics). The most common modification is to
avoid aggressive short positions. An extreme case is
the no-shorting portfolio, which avoids shorting alto-
gether. This approach is analyzed in Jagannathan and
Ma (2003), who argue that the “wrong” no-shorting
constraint helps because it reduces the effects of the
estimation error. They give evidence for better per-
formance using both simulated and real-world data.
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A weaker version of the no-shorting constraint in-
volves penalizing a norm of the portfolio weights,

min
w

w′Σw + η‖w‖pp subject to w′1 � 1. (1)

Two common norms are the L1 norm (Welsch and
Zhou 2007, Brodie et al. 2009, Fan et al. 2012) and the
L2 norm (Lauprête 2001, DeMiguel et al. 2009b).
Among these studies, Fan et al. (2012) is the only one
that uses both simulated and real-world data to show
better performance and that also provides a mathe-
matical justification. Lauprête (2001) takes the view
that norm-constrained portfolios are regularizations
that counteract the deviations from the normality of
the distribution of returns. Empirical evidence is pro-
vided via simulations, but only one real-world data set
is used. DeMiguel et al. (2009b) provide more com-
prehensive empirical results. They show that the
norm-constrained portfolios dominate the equally
weighted portfolio and the estimated Min-Var port-
folio, in terms of both the out-of-sample variance and
the Sharpe ratio. They also show the relation be-
tween norm-constrained portfolios and Bayesian
priors on the sample covariance matrix. Gotoh and
Takeda (2011) find that the norm constraints are
equivalent to the robust constraints associated with
the return vector, and Olivares-Nadal and DeMiguel
(2018) point out that the norm constraints can be
interpreted as the transaction costs. These relations
indicate that the same basic idea underpins many
seemingly disparate models.

Our approach is complementary to each of the three
categories. Estimation errors might be reduced by the
first set of methods, but it cannot be eliminated, and
we show that this error is amplified by the solver of
the portfolio optimization. The second category is
based on the good performance of the equally weighted
portfolio. We provide theoretical reasons for its good
performance and also show its relation with our
bounded-noise portfolio. In the third category, the
norm of the portfolio weights is penalized, but the
penalty factor and the norm must be chosen for each
data set. We show how the right penalty can be chosen
by using a single constant parameter in our method.
This constant parameter value is robust and applies
not only to every period of a data set, but also across
data sets.

There is another stream of related literature that
does not fit into the three categories above. Laloux
et al. (1999, 2000) and Plerou et al. (2002) use results
from random matrix theory to help estimate better
correlation matrices. They also use the signal/noise
terminology, but define these differently. They begin
by assuming that the correlation matrix is a random
matrix generated by independent asset returns. Then,
any deviation of the eigenvalue distributions from
that dictated by random matrix theory is considered

information or a signal. By this definition, for ex-
ample, the lowest eigenvalues and corresponding
eigenvectors are likely to be considered a part of the
signal in their case (Plerou et al. 2002), but noise in
ours. Laloux et al. (2000) modify their correlation ma-
trix (not covariance) by replacing all the noise eigen-
values with their average and show that it performs
better than the sample correlation matrix.

3. Estimation Error and Its Amplification
The basis of our approach stems from the fact that some
eigenvalues and corresponding eigenvectors of the true
covariancematrix are better estimated thanothers. In this
section, we describe the estimation errors and how they
get amplified in the optimization step. While doing this,
wealsopresentour signal andnoise space andshowhow
portfolios in these spaces can be combined.

3.1. Estimation Error
In Proposition 3.1, we show that the relative errors
(percentage deviations from the true values) in esti-
mating the large eigenvalues of the true covariance
matrix are small, whereas the relative errors in esti-
mating the small eigenvalues are large. We use Σ to
represent the true covariance matrix and Σ̂ to repre-
sent the sample covariance matrix. ‖ · ‖op denotes the
operator norm. The sample size is n, and the number of
assets is p. Proofs are deferred to the online appendix.

Proposition 3.1 (Eigenvalue Concentration). Let λi and λ̂i
represent the ith largest eigenvalues of Σ and Σ̂, respectively.
Then, we have

|λi − λ̂i|
λi

≤ ‖Σ − Σ̂‖op
λi

.

Estimation errors for the eigenvectors are a bit more
complicated to characterize. Lemma 3.2 shows that
the estimation error not only depends on ‖Σ − Σ̂‖op,
but also how separated the eigenvalues are.

Lemma 3.2 [Concentration of Eigenvectors (Yu et al.
2015)]. Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues
λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p, respectively. Fix 1 ≤ r ≤
s ≤ p, and assume thatmin(λr−1 − λr, λs − λs+1)> 0,where
λ0 � ∞ and λp+1 � −∞. Let d � s − r + 1. Let V � (vr,
vr+1, . . . ,vs) ∈ Rp×d andV̂ � (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have
orthogonal columns satisfying Σvj � λjvj and Σ̂v̂j � λ̂jv̂j;
then there exists an orthogonal matrix Ô ∈ Rd×d, such that

‖V̂Ô − V‖F ≤
23/2d1/2‖Σ̂ − Σ‖op

min λr−1 − λr, λs − λs+1( ) .

Vershynin (2011) provides a description of ‖Σ − Σ̂‖op
in terms of n and p: under mild conditions, a high-
probability upper bound of ‖Σ − Σ̂‖op is roughly of

order (p/n)12−2
q, where the qth moment of the data are

bounded. Thus, for a given number of assets p, the
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difference decays when more observations are avail-
able, as expected.

Previous work on financial data sets shows that a
few factors can explain a significant portion of the
variance of asset returns (Fama and French 2015). This
finding suggests that Σ has only a few large eigen-
values (whose corresponding eigenvectors mirror the
relevant factors), whereas most of the eigenvalues are
small (so their eigenvectors have just a small contri-
bution to the variance of asset returns).

This intuition is supported by our observations
from a historical covariance matrix constructed from
the monthly returns of the Fama–French value-weighted
data setwith96 instruments, aggregatedover625months.
Figure 1 shows the eigenvalues of this “true” covariance
matrix, as well as those of a sample covariance matrix
simulated from the covariance matrix (both of which
are ordered from largest to smallest eigenvalue). Ob-
serve that the largest eigenvalues are well separated,
but the smallest ones are densely packed (note that
we scale the y-axis logarithmically). Note also that the
relative difference between the estimated and the true
eigenvalues is small for the largest eigenvalues, im-
plying that they are relatively well estimated. In ad-
dition to these simulation results and the arguments
from the finance literature, we see widespread evi-
dence of similar phenomena in the eigenvalue spectra of
many real-world networks (Mihail and Papadimitriou
2002, Chakrabarti and Faloutsos 2006).

3.2. Error Amplification in Portfolio Optimization
The previous discussion shows that the largest eigen-
values and related eigenvectors in the sample covariance

Σ̂ are relatively good estimates of the corresponding
eigenvalues and eigenvectors of the true covari-
ance matrix Σ. The smaller eigenvalues and the cor-
responding eigenvectors are poor estimates. Hence,
we separate the true eigenvectors (v1, . . . , vp) into two
sets: from index 1 to k, and from k + 1 to p. When the
split index k is chosen appropriately, we expect the
first set to be better estimated than the second set. We
will show that the first set of estimated eigenvalues
and eigenvectors are also more reliable for portfolio
construction, whereas the remaining ones are not.
This will guide our algorithm for estimating k from
training data, as detailed later in Section 4.1.
For now, given a k, denote the space spanned by

v1, . . . , vk as 6 and the space spanned by the other
eigenvectors as1. To understand how these two parts
influence portfolio optimization, we first provide a
new characterization of the true Min-Var portfolio.

Lemma 3.3 (Portfolio Decomposition). For any separation
(6,1), the optimal portfolio w∗ can be expressed as

w∗ � αw∗
S + (1 − α)w∗

N , (2)

α � 1/RV(w∗
S)

1/RV(w∗
S) + 1/RV(w∗

N)
. (3)

Here, w∗
S and w∗

N are defined as the solution to the fol-
lowing optimization problems,

w∗
S � argmin

w
w′Σw,

subject to w′1 � 1,
w ∈ 6,

∣∣∣∣∣∣∣
w∗

N � argmin
w

w′Σw,

subject to w′1�1,
w∈1.

That is, w∗
S is the solution to the Min-Var problem given

the restriction of being a linear combination of the first k
eigenvectors (the vectors that span 6) andw∗

N the solution
with the restriction of being a linear combination of the
other eigenvectors. In the above, RV(w) is the out-of-
sample variance (henceforth, the realized variance)3 of
w, namely,

RV(w) � w′Σw.

Thus, the true Min-Var portfolio can be seen as a
convex combination of two portfolios: one restricted
to space 6 and the other confined to space 1. The
weight of each portfolio is proportional to the inverse
of its realized variance.
Now consider the estimated Min-Var portfolio ŵ∗.

It can be expressed in the same form as in Lemma 3.3,
but with the true parameters replaced by their esti-
mated counterparts. In particular, the eigenspace 6
is replaced by 6̂ � span(v̂1, . . . , v̂k); 1 is replaced by
1̂ � span(v̂k+1, . . . , v̂p); the portfolios w∗

S and w∗
N are

replaced by ŵ∗
S and ŵ∗

N . We use ŵ∗
S instead of ŵ∗̂

S
solely

Figure 1. (Color online) Distribution of True and Estimated
Eigenvalues
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to simplify notation. Also, crucially, the realized
variance RV(w) � w′Σw is replaced by the estimated
variance EV(w) � w′Σ̂w. Thus, the relative weight of
ŵ∗

S to ŵ∗
N in the overall portfolio ŵ∗ [Equation (3)] is

now driven by the estimated variance instead of the
realized variance.

To further illustrate the differences between the re-
alized variance and the estimated variance, we perform
simulations on the Fama–French value-weighted data
set comprising 96 stocks. In the simulation, we as-
sume that the true covariance matrix Σ and the true
expected return µ are the sample covariance matrix
and the samplemean using allmonthly data from July
1963 to July 2015 (625 observations). We also assume
that the returns follow a multivariate normal distri-
bution with mean µ and covariance Σ, and we draw
120 observations (10-year monthly data) from this
distribution.

We calculate the realized and the estimated variances
for various split indices k. We repeat this experiment
100 times and calculate related averages. Figure 2
shows the ratio of realized variance to estimated
variance for ŵ∗

S and ŵ∗
N . The realized variance of ŵ∗

S
is similar to its estimated variance when k is small
[Figure 2(a)]. However, for ŵ∗

N , the realized variance is
much larger than its estimated variance [Figure 2(b)].
Indeed, it is at least 20 times larger for any k. This
underestimation means that ŵ∗

N , which uses the
poorly estimated parameters, gets overweighted sig-
nificantly when ŵ∗

S and ŵ∗
N are combined to con-

struct ŵ∗.

4. The Bounded-Noise Portfolio
The previous discussion shows the utility of sepa-
rating a “signal” space 6̂ (and the signal-only portfolio
ŵ∗

S) froma “noise” space 1̂ (and the aggressive noise-only
portfolio ŵ∗

N) using a signal/noise split index k on the
eigenvectors of the covariance matrix Σ̂. In this sec-
tion, we begin by formally defining the signal/noise
split. Rather than splitting by the estimation errors,
we show in Section 4.1 how we can use the effect of
the estimation errors on the optimization objective to
dictate the split. Given this split, we then construct
the signal-only portfolio by minimizing its estimated
variance in Section 4.2. To take advantage of the in-
formation contained in the noise space, in Section 4.3,
we use the idea of minimizing the upper bound of the
realized variance to construct the conservative noise-
only portfolio. This bound also provides a way to com-
bine the conservative noise-only portfolio cautiously
with the signal-only portfolio. We describe the combi-
nation procedure in Section 4.4. We call the combined
portfolio the bounded-noise portfolio (the BN port-
folio). We discuss the entire algorithm including the
procedure to estimate the parameters needed in the
algorithm, in Section 4.5.

4.1. Splitting into Signal and Noise
Our intuition for a signal is that (λ̂i, v̂i) ≈ (λi, vi).
However, this intuition can be refined based on the
specifics of the portfolio-optimization problem. The
simulation in Section 3.2 shows the underestimation
of the realized variance by the estimated variance.

Figure 2. The Ratio between RV and EV

Notes. Panel (a): The top-k eigenvector portfolio ŵ∗
S. Panel (b): The bottom (p − k)-eigenvector portfolio ŵ∗

N .
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This underestimation leads to the aggressive noise-
only portfolio being overweighted in the esti-
mated Min-Var portfolio. Hence, we characterize
the signal space as all eigenpairs (λ̂i, v̂i) that are
such that

amplification ratio φi ≜
RV(v̂i)
EV(v̂i) �

RV(v̂i)
λ̂i

≤ 1 + γ,

(4)

where the parameter γ> 0 allows for some flexibility.
We set γ � 0.25 for all experiments and provide
sensitivity analysis on γ in Section 7.5. Because the
realized variance is unknown, φi needs to be esti-
mated, and we provide the procedure in Section 4.5.
The first advantage of Equation (4) is that accu-
rate estimation of eigenvalues and eigenvectors
(i.e., (λ̂i, v̂i) ≈ (λi, vi)) is sufficient to ensure φi ≤ 1 + γ,
but is not necessary.4 Another advantage is that it
does not impose separate conditions on eigenvalues
and eigenvectors; instead, it captures, via a single
formula, the way in which these quantities affect
portfolio optimization.

Definition 1 (Signal and Noise). Let the eigenvalues of
the estimated covariance matrix Σ̂ be set in decreasing
order: λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p. Let the corresponding eigen-
vectors be denoted by v̂i. Let the eigenvalues λi and
the corresponding eigenvectors vi of the true covariance
matrix Σ also be ordered as λ1 ≥ λ2 ≥ . . . ≥ λp > 0. For
a given γ, the signal/noise split point k∗ is defined as
follows:

k∗ � max k φi ≤ 1 + γ, ∀i ≤ k
∣∣{ }

.

The space spanned by {v̂i | i ≤ k∗} is defined as the
signal space, whereas the space spanned by {v̂i | i> k∗}
is defined as the noise space. It is possible for one of
these spaces to be empty. The corresponding sets of
eigenvalue and eigenvector pairs, namely, {(λ̂i, v̂i) |
i ≤ k∗} and {(λ̂i, v̂i) | i> k∗}, are referred to as signal and
noise, respectively.

In Definition 1, we assume the true covariance
matrix is strictly positive definite. With such an as-
sumption, given p, as n → ∞, all (λ̂i, v̂i) pairs are
considered to be signal:

φi − 1
∣∣ ∣∣ � v̂′iΣv̂i

λ̂i
− 1

∣∣∣∣
∣∣∣∣ � |v̂′i (Σ − Σ̂)v̂i|

λ̂i

≤ ‖Σ − Σ̂‖op
max(0, λp − ‖Σ − Σ̂‖op)

→ 0,

where the last inequality follows from Proposition 3.1
and the definition of the operator norm.

4.2. The Signal-Only Portfolio
By construction, the signal space consists of sample
eigenvectors whose estimated variance is a reliable
indicator of their realized variance. Thus, the signal-
only portfolio, ŵ∗

S, constructed from these sample
eigenvectors, should also be reliable. Mathematically
speaking, this portfolio is equivalent to a principal
component analysis-based portfolio that ignores a
certain number of the low eigenvalues of Σ̂ and cor-
responding eigenvectors.

4.3. The Conservative Noise-Only Portfolio
Eigenvectors in the noise space are poorly estimated.
Hence, although the estimated variance of a portfolio
from the noise space might be low, its realized vari-
ance might be much higher. Our idea is simple: Be-
cause estimates of variance are too unreliable in the
noise space, we instead develop an upper bound for
the realized variance of any portfolio in the noise
space. Then, we choose the portfolio that minimizes
this upper bound.

Proposition 4.1 (Bounding Realized Variance of any Port-
folio from the Noise Space). Let the noise space eigenvectors
of Σ̂ be v̂k+1, . . . , v̂p, the space spanned by them be 1̂, and
the matrix whose columns are (v̂k+1, . . . , v̂p) be N̂. For any
w ∈ 1̂,

RV(w) ≤ EV(w) +m‖w‖22, (5)

where m is the largest eigenvalue of the matrix N̂′(Σ − Σ̂)N̂.

We callm the noise bound. Because the true covariance
matrix, Σ, is unknown, we need to estimate the noise
bound, and the procedure is provided in Section 4.5.
The realized variance of any portfolio w from the
noise space can be upper-bounded by a function
BRV(w), which is defined as BRV(w) � EV(w) +
m‖w‖22. Here, BRV stands for the bounded realized
variance. It is natural now to choose a portfolio from
the noise space that minimizes this upper bound:

min
w

BRV(w),
subject to w′1 � 1,

w ∈ 1̂.

(6)

This portfolio is not necessarily close to the optimal
noise portfolio w∗

N . However, it is conservative be-
cause it is the bound that is minimized. Thus, we call
this portfolio the conservative noise-only portfolio and
denote it as ŵBN

N .

4.4. Combining the Two Portfolios
Finally, we must combine the signal-only portfolio,
ŵ∗

S, with the conservative noise-only portfolio, ŵBN
N ,

into a single portfolio. Equation (3) shows that the
combination weights each portfolio by the inverse of
its realized variance. For the signal-only portfolio, the
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estimated variance is a good proxy for the realized
variance. However, the same is not true for the
conservative noise-only portfolio. Hence, instead of
using its erroneous estimated variance, we use the
upper bound.5 Thus, the BN portfolio is given by

ŵBN � αBNŵ∗
S + 1 − αBN( )

ŵBN
N ,

αBN � 1/EV(ŵ∗
S)

1/EV(ŵ∗
S) + 1/BRV(ŵBN

N ) .
(7)

Given the split, k∗, and the noise bound, m, we can
obtain the analytical form of both the signal and the
conservative noise portfolio, which can be plugged
into Equation (7) to express ŵBN as

ŵBN �
∑k∗

i�1
v̂′i1
λ̂i
v̂i +∑p

i�k∗+1
v̂′i1
λ̂i+m v̂i∑k∗

i�1
(v̂′i1)2
λ̂i

+∑p
i�k∗+1

(v̂′i1)2
λ̂i+m

. (8)

In other words, the BN portfolio adds the noise
bound, m, to the eigenvalues whose corresponding
eigenvectors belong to the noise space while adding
0 to the other eigenvalues. Thus, Equation (8) is equiv-
alent to saying that the BN portfolio, ŵBN , is the so-
lution to the following optimization problem:

min
w

w′(Σ̂ +M)w,

subject to w′1 � 1,
where M � mN̂N̂′.

(9)

4.5. Estimating k∗ and m
Both k∗ and m are functions of Σ and Σ̂. Because Σ is
unknown, they need to be estimated. Instead of assuming
a particular distribution of returns (say, Gaussian), we
estimate them using the bootstrap method. In particular,
we draw bootstrap samples from the observed returns
and construct the bootstrap covariance matrix Σ̂B. Then,
we estimate k∗ andm by using (Σ̂, Σ̂B) in place of (Σ, Σ̂)
in Definition 1 and Proposition 4.1. Plugging in these
estimates in Equation (8) gives us the BN portfolio
weights. The algorithm is summarized below.

1. Estimation of the split, k∗, and the noise bound,m.
(a) Draw L � 1, 000 bootstrap samples from the

observed sample returns. Construct the corresponding
bootstrap covariance matrices Σ̂Bj, j � 1, 2, . . . ,L.

(b) Calculate the bootstrap analogs φ̃ji of φi for
each i � 1, 2, . . . , p and j � 1, 2, . . . ,L:

φ̃ji �
ṽ′jiΣ̂ṽji
λ̃ji

,

where λ̃ji and ṽji are the ith eigenvalue and eigenvector
of Σ̂Bj, respectively.

(c) Estimate the split, k∗, as follows:

k̂ � max k | median{φ̃ji | j ∈ [1,L]})
{

≤ 1 + γ � 1 + 0.25 � 1.25,∀i ≤ k
}
.

(d) Estimate the noise bound, m, using the fol-
lowing estimator

m̂�median λmax N̂′
Bj(Σ̂ − Σ̂Bj)N̂Bj

( )∣∣∣ j�1, 2, . . . ,L
{ }

,

where λmax denotes the largest eigenvalue of a matrix,
and N̂Bj is thematrix of eigenvectors of Σ̂Bj in the noise
space: N̂Bj � (ṽjk̂+1, . . . , ṽjp).

2. Replace the split, k∗, and the noise bound,m, with
their estimation k̂ and m̂ in Equation (8) to get the BN
portfolio.
Note that the median is used instead of the mean in

steps (c) and (d) to ensure robustness of the estimates.
Figure 3 contrasts the classical approach with the
bounded-noise procedure.

5. Bounded-Noise Portfolios for
Mean-Variance Optimization

Our discussions up to this point and in much of the
related literature (Jagannathan and Ma 2003, Brodie
et al. 2009, DeMiguel et al. 2009b, Fan et al. 2012)
focus on the Min-Var portfolio to avoid the problem
of estimating the expected returns. However, this
focus restricts our ability to optimize for other mea-
sures such as the Sharpe ratio. In this section,we show
how to adapt the bounded-noise idea to the problem
of maximizing the Sharpe ratio.
One difficulty in achieving a high Sharpe ratio is

that stretching for higher estimated expected returns
often requires aggressive positions, which can cause
unexpected increases in the realized variance if the
errors in the covariance estimation are not adequately
accounted for. That is to say, any gains in expected
returns can be swamped by the increases in the re-
alized variance, leading to a Sharpe ratio even lower
than that of the estimated Min-Var portfolio. How-
ever, our upper bound on the realized variance allows
us to overcome this issue.
We propose the following formulation for the

mean-variance portfolio problem:

max
w

µ̂′w

subject to w′(Σ̂ + M̂)w ≤ cσ2min
w′1 � 1,

where M̂ � m̂N̂N̂′.

(10)

Here, µ̂ is the vector of mean return estimated from
the samples, c ≥ 1 is a constant, and σ2min is the optimal
objective value of the BN optimization problem
[Equation (9)] with M̂ replacingM. If c � 1, we recover
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the BNportfolio.When c> 1, Equation (10)maximizes
the estimated expected return by allowing a higher
realized variance than the BN portfolio. Crucially,
the inequality in Equation (10) is based not on the
estimated variance but on our upper bound for the
realized variance. Because the Sharpe ratio has the
realized standard deviation RSD(w) � ����������

RV(w)√
as its

denominator, this inequality ensures that the de-
nominator cannot become too large and overshadow
the gains in the expected returns.

We choose the value of c via cross-validation over
all previous periods. In the experiments, we set c � 1
for the first two years (i.e., we use the BN portfolio).
Then, each time we generate a new portfolio, we
choose c ∈ [1, 1.5] such that the previous overall out-
of-sample Sharpe ratio is maximized.6 For example,
at the end of the 10th year, we calculate the Sharpe
ratio of the previous 10 years’ monthly returns for
various c ∈ [1, 1.5]. Then, we use the c that gives the
highest Sharpe ratio to construct the portfolio for the
next period. We call this the BNVAR portfolio.

6. Connections to Existing
Portfolio-Optimization Methods

Empirical studies have shown that the norm-
constrained portfolios work very well in practice
(DeMiguel et al. 2009b). The preferred reasoning for

its good performance is that the norm penalties on
portfolio weights prevent large weights, which are
often the result of estimation errors. Apart from the
obvious issue of disallowing large portfolio weights
even when the optimal portfolio might have them
(Green and Hollifield 1992), this approach only fixes
one particular effect of estimation error.
We first show that the norm-constrained portfolios

might impose the “wrong” constraints. Coupled with
the idea of signal/noise split, we showwhy the norm-
constrained portfolios work. We also discuss the rela-
tionbetween theBNportfolio and the equallyweighted
portfolio. Finally, we provide an interpretation of the
BN portfolio as a new way to combine the estimated
Min-Var portfolio and the equallyweighted portfolio.

6.1. Imposing the Wrong Constraints to Combat
Estimation Error

A penalty on the p-norm of portfolio weights, ‖w‖p, is
equivalent to a constraint of the form ‖w‖p ≤ δ for
some δ> 0. Such a constraint can be justified if it
renders infeasible a large set of poorly performing
portfolios that might otherwise be selected because
of estimation errors. However, the constraint must
not be so restrictive that even the optimal portfolio
w∗ becomes infeasible.

Figure 3. Diagram of the Estimated Min-Var Portfolio Compared with the Bounded-Noise Portfolio
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Figure 4 shows how the realized standard devia-
tion (RSD) varieswith different constraint levels, δ, for
the L1 and L2 norm-constrained portfolios under the
simulations using the Fama–French value-weighted
data set with 96 assets. In both cases, as expected, the
RSD is too high at the extremes, because the con-
straints become either too strict or too weak. How-
ever, the optimum RSD is achieved for a constraint
level at which the optimal is infeasible; indeed, the
optimum δ is about half of the norm of the optimal
portfolio ‖w∗‖p. This agrees with Green and Hollifield
(1992), who show that the optimal portfolio could have
large weights. Thus, the norm-constrained methods
can achieve a low RSD only by imposing the wrong
constraints, and they cannot be justified simply as a
means of capping the estimation error effects.

6.2. Relations to the Norm-Constrained Portfolios
It is easy to see that the L2 norm-constrained portfolio
is a special case of the bounded-noise portfolio. Recall
that we can interpret the BN portfolio as the solution
to the Min-Var problem using a modified covariance
matrix Σ̂ + M̂, where M̂ � m̂N̂N̂′ [see Equation (9)]. If
the noise space contains all eigenvectors, we have
M̂ � m̂I. This yields the norm-constrained portfolio
with the L2-norm penalty and regularization pa-
rameter m̂.

To get further insight, we must understand how
norm-constrained portfolios interact with the signal
and noise spaces. The next lemma shows how, for a
given k, any portfolio can be split into two unique
“projection” portfolios on the signal and noise spaces,
and a specific mixing proportion.

Lemma 6.1 (Projection Portfolios). Denote the eigenvectors
of Σ̂ by v̂1, . . . , v̂p. For any integer k between 1 and p, let
6̂ � span(v̂1, . . . , v̂k) and 1̂ � span(v̂k+1, . . . , v̂p). Also in-
troducematrix Ŝ� (v̂1, . . . , v̂k), and matrix N̂ � (v̂k+1, . . . , v̂p).
For any weight w that satisfies w′1� 1, there is a unique
decomposition,

w � θwS + (1 − θ)wN , (11)

such that wS ∈ 6̂, w′
S1 � 1, and wN ∈ 1̂, w′

N1 � 1. These
“projection portfolios” wS and wN , and the inferred mixing
proportion θ, are given by

θ � w′ŜŜ′1, wS � ŜŜ′w
w′ŜŜ′1

, wN � N̂N̂′w
w′N̂N̂′1

. (12)

Also, as discussed in Section 3.2, the mixing pro-
portion for the estimated Min-Var portfolio is

1/EV(ŵ∗
S)

1/EV(ŵ∗
S) + 1/EV(ŵ∗

N)
. (13)

The strong performance of norm-constrained portfolios
could be because they have better projection portfolios
than the estimatedMin-Var portfolio or because they use
a bettermixing proportion than relying on the estimated
variance [Equation (13)]. We explore this by simu-
lating sample returns from a multivariate normal
distribution (with μ and Σ from the Fama–French
value-weighted data set) and constructing portfolios
from these samples. We then calculate the RSD of the
corresponding projection portfolios. All results are
averaged over 100 iterations. For brevity, we will call
the L1-norm constrained portfolio the L1 portfolio
with weight vector ŵL11 ; the L2 portfolio with weight

Figure 4. (Color online) Realized Standard Deviation (RSD) with Respect to Different Norm-Constraint Levels

Notes. Panel (a): L1-norm, the vertical line: δ = | |w*| |1. Panel (b): L2-norm, the vertical line: δ = | |w*| |2.
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vector ŵL2 is defined accordingly.7 All projection
portfolios are built by using the estimated signal/
noise split k̂.

Table 1 compares the RSD of the projection port-
folios for the L1 and L2 portfolios, as well as the BN
portfolio. Observe that the signal-space projections of
all portfolios have similar RSD (indeed, ŵ∗

S � ŵBN
S by

construction). Thus, even though the L1 and L2
portfolios do not explicitly construct a signal/noise
split, they indirectly use the signals just as effectively.

The noise-space projections of the L1 and L2 port-
folios achieve a much lower RSD than the aggressive
noise-only portfolio ŵ∗

N . Thus, norm-based penalties
indirectly lead to improved noise-space portfolios.

To investigate the effect of the mixing proportion,
we create new portfolios L̃1 and L̃2 that have the same
projection portfolios as the L1 and L2 portfolios, re-
spectively, but where the mixing proportion is cal-
culated by using estimated variances [Equation (13)].
Table 2 shows that the L̃1 and L̃2 portfolios are much
worse than the L1 and L2 portfolios, respectively. In
fact, they are even worse than the signal-only port-
folio. This indicates that, even with improved noise-
space projection portfolios, finding the right mixing
proportion is important. The inferredmixing proportion
θ (from Lemma 6.1) for the L1 portfolio is, on average,
1.65 times as large as it for the L̃1 portfolio. The cor-
responding ratio is 2.09 for the L2 portfolio versus the
L̃2 portfolio. This shows that norm-constrained portfolios
avoid overweighting the noise-space projection portfo-
lios, and hence escape the error amplification trap.

6.3. Relation to the Equally Weighted Portfolio
The estimated Min-Var portfolio mainly fails because
the eigenvectors and eigenvalues from the noise space
are taken at face value. In the BNportfolio, this problem
is rectified because we pick the conservative noise-
only portfolio, ŵBN

N , that minimized the upper bound
of the realized variance (Proposition 4.1). An alternative
approach to robustnesswould be to pick a portfolio from
the noise space that has the best “worst-case” realized
variance (i.e., the portfolio that is robust against all

possible configurations of eigenvectors that span the
noise space 1̂ and is also robust against their eigen-
values). This solution is completely independent of
Σ̂, apart from the estimated signal/noise split, k̂.
We could achieve this solution by solving the following
optimization problem:

min
w

max
Ψ∈8

w′Ψw,

subject to w′1 � 1
w ∈ 1̂,

(14)

where 8 is the uncertainty set of all possible covariance
matrices Ψ that have the same signal eigenvectors
and eigenvalues as Σ̂. Because Equation (14) con-
siders only w ∈ 1̂, we can use the following uncer-
tainty set:

8 � {Ψ|N̂′ΨN̂ 
 bIn−k̂+1}, (15)

where b is a constant and In−k̂+1 is a (n − k̂ + 1) × (n −
k̂ + 1) identity matrix.
The idea of a robust portfolio has been expressed

previously in the literature in the form of the equally
weighted portfolio. This strategy is the right one in the
extreme case where no historical data are available.
Otherwise, applying this idea just to the noise space is
reasonable. Indeed, the projection of the equally
weighted portfolio on the noise space yields precisely
the portfolio of Equation (14), as shown in Lemma 6.2.

Lemma 6.2 (The Solution to the Robust Optimization). The
solution to the robust optimization problem Equation (14)
with the uncertainty set defined in Equation (15) is the
projection portfolio of the equally weighted portfolio on 1̂.

This shows that the projection wEW
N of the equally

weighted portfolio wEW is a good candidate for a
conservative noise-space portfolio, just like ŵBN

N . In-
deed, if m̂ � λ̂k̂+1, then ŵBN

N ≈ wEW
N , because

ŵBN
N �

∑p
i�k̂+1

v̂′i1
λ̂i+m̂ v̂i∑p

i�k̂+1
(v̂′i1)2
λ̂i+m̂

≈
∑p

i�k̂+1(v̂′i1)v̂i∑p
i�k̂+1(v̂′i1)2

� wEW
N . (16)

In simulation, the average inner product between
ŵBN

N and wEW
N is 0.991, and their RSDs are similar

as well (4.917 versus 4.948). Because the BN portfo-
lio combines ŵBN

S (� ŵ∗
S) and ŵBN

N (≈ wEW
N ), it can be

interpreted as a principled method to combine the
estimated Min-Var portfolio and the equally weighted
portfolio.

Table 1. RSD of Projection Portfolios

Portfolio weights ŵ∗
S ŵBN

S ŵL11
S ŵL22

S ŵ∗
N ŵBN

N ŵL11
N ŵL22

N

Mean monthly RSD (%) 3.696 3.696 3.753 3.719 7.687 4.917 6.008 4.928

Table 2. Effects of Mixing Proportion on RSD

Portfolio weights ŵBN ŵL11 ŵL̃1 ŵL12 ŵL̃2 ŵ∗
S

Mean monthly RSD (%) 3.488 3.700 4.215 3.531 3.979 3.696
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7. Empirical Results
In this section, we compare the out-of-sample per-
formance of the BN portfolio and the BNVAR portfolio
to eight other portfolios from the literature (Table 3)
across 12 different data sets (Table 4). The time period
for all data sets is July 1963 to July 2015, which shares
the same starting point as DeMiguel et al. (2009b). All
data sets, except the ones for individual stocks, come
from Kenneth French’s website.8 For the 100 Fama
and French (1992) data set, because there are missing
values for four risky assets for an extended period, we
deleted them, leaving 96 of the original 100 portfolios.
The individual stocks data sets come from the Center
for Research in Security Prices. There is a challenge in
creating the stocks data sets due to market issues like
mergers, acquisitions, delistings, initial public offer-
ings, etc. Ledoit and Wolf (2017) use a procedure that
provides a more stable collection of stocks than random
selections (Jagannathan and Ma 2003, DeMiguel et al.
2009b). We use this procedure annually and update
our list by choosing the largest 100 or 500 stocks,9 as
measured by their market value.10 Updating the stock
list selection annually facilitates our turnover inves-
tigations as well (Section 7.3). The only parameter γ,

which is used in the BN portfolio, is set to 0.25 for
all data sets. Its sensitivity analysis is in Section 7.5.
We use L � 1, 000 bootstrap samples in the estimation
procedure.

CompetingMethods. Weconsider twonaı̈ve portfolios,
the equally weighted (EW) and the value-weighted
(VW) portfolios, as our benchmarks. Every asset in
the EW portfolio is given equal weight when it is
rebalanced. For the VW portfolio, the fraction of the
market capitalization is assigned to each asset as its
portfolio weight. DeMiguel et al. (2009a) provide a
thorough analysis for both portfolios. The ESTMINVAR

portfolio, which is defined at the beginning of
Section 2, is the estimated Min-Var portfolio formu-
lated in Markowitz (1952).
In addition to these standard benchmarks, we

consider three others that add additional constraints
or penalties to the Min-Var portfolio-optimization
problem. The first one is the short-sale-constrained
portfolio (Jagannathan andMa 2003, section 1), which
has a nonnegativity constraint on the portfolio weights.
We call it theNOSHORTING portfolio. The remaining two
are norm-constrained portfolios, with parameters set

Table 3. List of Portfolios Considered in Empirical Experiments

Model Abbreviation

Bounded-noise portfolios
Min-Var portfolio BN
Mean-variance portfolio BNVAR

Equally-weighted portfolio EW
Value-weighted portfolio VW
Min-Var portfolio with sample covariance EstMinVar
Min-Var portfolio with sample covariance and shortsale constrained NoShorting
L1-norm-constrained Min-Var portfolio L1

L2-norm-constrained Min-Var portfolio L2

Partial Min-Var portfolio with parameter calibrated by
maximizing portfolio return in previous period

PARR

Min-Var portfolio with nonlinear shrunk covariance NonLin

Note. The penalty parameter for the norm-constrained portfolios is chosen by cross-validation over
standard deviation.

Table 4. List of Data Sets Considered

Data set Abbreviation p

Six Fama and French (1992) portfolios of firms sorted by size
and book-to-market

6FFEW, 6FFVW 6

Ten industry portfolios representing U.S. stock market 10IndEW, 10IndVW 10
Twenty-five Fama and French (1992) portfolios of firms sorted

by size and book-to-market
25FFEW, 25FFVW 25

Forty-eight industry portfolios representing U.S. stock market 48IndEW, 48IndVW 48
One hundred Fama and French (1992) portfolios of firms

sorted by size and book-to-market
96FFEW, 96FFVW 96

Top 100 market-value individual stocks with annual updates 100 100
Top 500 market-value individual stocks with annual updates 500 500

Note. We use EW (equally-weighted) and VW (value-weighted) to indicate the corresponding weighting type in the abbreviation.
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via cross-validation over standard deviation. These
portfolios are detailed in DeMiguel et al. (2009b,
sections 3.1 and 3.2). The L1-norm constrained port-
folio is labeled as L1, and the L2-norm constrained
portfolio is labeled as L2.

Finally, we also include two relatively recent and
well-performing benchmarks. The partial Min-Var
portfolio, whose parameter is calibrated by maxi-
mizing the portfolio return in the previous period, is
labeled as PARR and is detailed in DeMiguel et al.
(2009b, section 3.3). Ledoit and Wolf (2017, section
3.4) introduce the nonlinear shrinkagemethod, which
provides an excellent estimation of the covariance
matrix.We call the corresponding portfolio theNONLIN

portfolio.

Evaluation Method. We report two performance mea-
sures: the out-of-sample standard deviation and the
out-of-sample Sharpe ratio. The turnover discussion can
be seen in Section 7.3. Following the convention of
Brodie et al. (2009), DeMiguel et al. (2009b), and Fan
et al. (2012), we use the “rolling-horizon” procedure,
which uses a fixed-length training period to estimate.
We denote the length of training period as n<T,
where T is the total number of observations in the data
set. As in DeMiguel et al. (2009b), we use n � 120 (10-
year monthly return data). We construct various
portfolios using the same training data. Then, we roll
over to the next month, dropping the earliest month
from the previous training window. This procedure
yields T − n portfolio-weight vectors for each port-
folio. We denote the weight vector as wi

t for t � n, . . . ,
T − 1 and for each portfolio i.

Following DeMiguel et al. (2009b), we hold the
portfolio weight wi

t for 1 month. This approach
generates the out-of-sample return for time t + 1:
rit+1 � (wi

t)′rt+1, where rt+1 denotes the asset returns at
time t + 1. We use the time series of returns and
weights to calculate the out-of-sample standard de-
viation and the out-of-sample Sharpe ratio:

(σ̂i)2 � 1
T − n − 1

∑T−1
t�n

(wi
t)′rt+1 − μ̂i( )2, where

μ̂i � 1
T − n

∑T−1
t�n

(wi
t)′rt+1,

ŜR
i � μ̂i

σ̂i
.

We use Levene’s test (Levene 1960) to calculate the
statistical significance of the difference in the stan-
dard deviation. This test, with the sample median as
an estimation of the location parameter, is favored in

the literature because of its power and robustness
against nonnormality (Brown and Forsythe 1974,
Conover et al. 1981, Lim andLoh 1996). For the Sharpe
ratio, we use the bootstrapping methodology pro-
posed in Ledoit and Wolf (2008).

7.1. Out-of-Sample Standard Deviation
Table 5 shows that the BN portfolio achieves the best
out-of-sample standard deviation on five out of the
six large11 portfolio data sets and is second-best on the
48IndEWdata set. For all data sets, the BN portfolio is
always significantly12 better than the EW portfolio.
Note that the BNVAR portfolio has a higher out-of-
sample standard deviation than the BN portfolio
because it is expected to maximize the Sharpe ratio,
and not to minimize the standard deviation. The re-
sults for the stock portfolios should be interpreted
with caution, as these are aggregates over not per-
fectly comparable stock data sets. The BNVAR port-
folio does not exist for these two stocks data sets also
because of the changing universe of stocks. The for-
mulation of the BNVAR portfolio includes a constant c
[see Equation (10)]. The best choice of this c is on the
entire historical data and not just the training set only.
With a changing universe of stocks over the entire
history, a consistent and justifiable choice would not
be possible.
For the small data sets, the out-of-sample standard

deviation of the ESTMINVAR portfolio is only about 1%
larger than the best portfolio. This relationship in-
dicates that 120 observations are enough for the small
data sets to have the whole eigenspace as the signal
space. Hence, the BN portfolio should not differmuch
from the ESTMINVAR portfolio, and indeed the corre-
lation between their returns is more than 0.99. For the
same reason, we expect cross-validation to determine
very loose norm constraints for all the norm-constrained
methods. Thus, their corresponding portfolios should
be essentially the same as the ESTMINVAR portfolio.
This result is again supported by the high correla-
tion (about 0.99) between the returns of the norm-
constrained portfolios and the ESTMINVAR portfolio.
Meanwhile, the NOSHORTING portfolio’s constraint
cannot be relaxed, and, as expected, its performance
suffers because its constraint interferes with portfolio
selection using a well-estimated covariance matrix.
However, it does better on some big data sets, where
its constraint helps to avoid the effects of covariance
estimation errors.

7.2. Discussion of Out-of-Sample Sharpe Ratio
Table 6 shows that, except for data set 48IndVW, the
portfolio that has the highest Sharpe ratio is not
the portfolio that has the lowest standard deviation.

Zhao, Chakrabarti, and Muthuraman: The Bounded-Noise Portfolio
Operations Research, Articles in Advance, pp. 1–19, © 2019 INFORMS 13



The BNVAR portfolio has the best out-of-sample Sharpe
ratio for 6 of the 10 portfolio data sets, and the dom-
inance on these six data sets is both statistically and
economically significant. These results show that we
are indeed able to increase the out-of-sample Sharpe
ratio for most data sets by allowing a higher vari-
ance level. The PARR portfolio achieves the best
performance for four data sets, which is consistent
with the results DeMiguel et al. (2009b). However,
the analysis does not take transaction costs or taxa-
tion into account, which are crucial when turnover
is high.

7.3. Robustness of Holding Length and Turnover
To get a sense of how portfolio performance depends
on turnover, we compare the performance of the
earlier monthly rebalanced portfolios with the an-
nually rebalanced portfolios (Brodie et al. 2009). This
allows us to evaluate the effects of turnover without

making the results sensitive to either the type or the
magnitude of transaction costs. The primary benefit
here is that the performance measure now coincides
with the objective, making it a fair comparison. The
secondary benefit is that, from a taxation perspective,
holding a portfolio 1 year also reduces the taxation
rate from short term to long term. Olivares-Nadal and
DeMiguel (2018) show that by penalizing the turn-
over in the portfolio-construction procedure, it is
possible to sharply reduce the turnover without sac-
rificing much in performance.
Comparedwith Tables 5 and 6, Tables 7 and 8 show

that the performance of the low-turnover portfo-
lios (EW, VW, and NOSHORTING) remains similar.
The BNVAR portfolio and the PARR portfolio see a
significant drop and are no longer the best. This
happens because both have high turnovers. The
BNVAR portfolio, the NOSHORTING portfolio, and the L1
portfolio are the only ones that have a larger Sharpe

Table 6. Out-of-Sample Monthly Sharpe Ratio

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 0.398** 0.327 0.268 0.291 0.433** 0.353** 0.284 0.280 0.391 0.351* 0.271 0.289
BNVAR 0.444 0.345 0.309 0.291 0.485 0.411 0.325 0.274 0.428 0.389 NA NA
EW 0.239*** 0.236*** 0.226 0.242 0.240*** 0.238*** 0.225* 0.222 0.237*** 0.239*** 0.202** 0.230*
VW 0.226*** 0.226*** 0.231 0.249 0.234*** 0.235*** 0.269 0.249 0.230*** 0.236*** 0.195** 0.210**
EstMinVar 0.398** 0.328 0.258 0.298 0.436** 0.361** 0.108*** 0.120** 0.167*** 0.169*** 0.142*** NA
NoShorting 0.264*** 0.247*** 0.304 0.284 0.261*** 0.242*** 0.310 0.257 0.266*** 0.260*** 0.250 0.292
L1 0.395** 0.329 0.290 0.278 0.427** 0.345** 0.272 0.244 0.399 0.364 0.242 0.259
L2 0.398* 0.324 0.269 0.295 0.422** 0.350** 0.271 0.256* 0.391 0.359 0.238** 0.276
PARR 0.405 0.335 0.369 0.343** 0.408** 0.360 0.343 0.271 0.248*** 0.282** 0.166** 0.345*
NonLin 0.393** 0.324 0.269 0.295 0.434** 0.358** 0.267* 0.239*** 0.400 0.362 0.234** 0.284

Notes. This table reports the monthly out-of-sample Sharpe ratio. The number in bold is the largest Sharpe ratio for one data set. If the BNVAR

portfolio is available, the p-value is calculated between it and other portfolios. If not, it is between the BN portfolio and others. The NAs of the
BNVAR portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c. Because the sample
covariance is degenerate, there is an NA of the estimated Min-Var portfolio.

*p < 0.1; **p < 0.05; ***p < 0.01.

Table 5. Out-of-Sample Monthly Standard Deviation in Percentage

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 4.473 4.062 3.571 3.604 3.651 3.686 3.640 3.522 3.675 3.607 3.477 3.302
BNVAR 5.105** 4.423* 3.984** 3.604 3.956 4.067** 3.964** 3.540 3.885 3.976* NA NA
EW 5.418*** 4.916*** 5.732*** 4.308*** 5.348*** 5.107*** 5.712*** 4.900*** 5.414*** 5.204*** 4.624*** 4.795***
VW 5.133** 4.453 5.817*** 4.031* 4.814*** 4.409*** 5.321*** 4.347*** 4.746*** 4.424*** 4.388*** 4.386***
EstMinVar 4.474 4.059 3.559 3.609 3.858 3.878 5.984*** 9.978** 7.172*** 7.077*** 6.499*** NA
NoShorting 4.870 4.377 3.605 3.615 4.614*** 4.293** 3.597 3.694 4.506** 4.267** 3.482 3.332
L1 4.415 4.058 3.720 3.680 3.758 3.790 3.754 3.605 3.902 3.757 3.602 3.487
L2 4.468 4.066 3.514 3.574 3.703 3.697 3.697 3.588 3.723 3.651 3.410 3.133
PARR 4.652 4.154 4.518*** 3.792 4.101** 3.981 4.783** 4.291** 5.244** 5.186** 5.157** 3.546
NonLin 4.469 4.044 3.545 3.583 3.690 3.717 3.662 3.651 3.732 3.666 3.435 3.047

Notes. This table reports themonthly out-of-sample standard deviation as a percentage. The numbers in bold are the smallest standard deviation
for one data set. The p-value is calculated between the BN portfolio and other portfolios. The NAs of the BNVAR portfolio occur because
the universe of stocks is changing and there are not enough data to learn the parameter c. Because the sample covariance is degenerate, there is
an NA of the estimated Min-Var portfolio.

*p < 0.1; **p < 0.05; ***p < 0.01.
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Table 7. Hold for 1 Year, Out-of-Sample Monthly Standard Deviation in Percentage

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 4.835 4.549 4.437 3.571 3.930 3.816 4.922 3.553 3.942 3.771 3.536 3.430
BNVAR 6.094** 5.629 4.127 3.571 4.775* 4.834*** 4.289 3.557 4.550 4.327* NA NA
EW 5.388** 4.911* 5.695*** 4.276*** 5.320*** 5.109*** 5.661*** 4.843*** 5.372*** 5.203*** 4.501*** 4.633***
VW 5.128 4.450 5.788*** 4.040* 4.796*** 4.404*** 5.300*** 4.340*** 4.740*** 4.443*** 4.380*** 4.379***
EstMinVar 4.835 4.606 4.513 3.577 4.130 3.950 27.439*** 11.896*** 7.397*** 7.417*** 7.232*** NA
NoShorting 4.908 4.469 3.628* 3.630 4.653*** 4.353** 3.634** 3.761 4.597*** 4.364*** 3.522 3.382
L1 4.860 4.607 3.746 3.642 4.034 3.935 4.372 3.682 4.126 4.006 3.789 3.357
L2 4.835 4.613 4.198 3.540 3.922 3.824 4.835 3.664 4.027 3.864 3.523 3.243
PARR 4.985 4.821 4.427 3.738 4.291*** 4.473*** 4.833** 4.255*** 5.505*** 6.292*** 5.463*** 3.511
NonLin 4.796 4.561 4.411 3.560 3.970 3.839 4.847 3.705 4.034 3.825 3.573 3.228

Notes. This table reports the monthly out-of-sample standard deviation as a percentage. The number in bold is the smallest standard deviation for
one data set. The p-value is calculated between the BN portfolio and other portfolios. The NAs of the BNVAR portfolio occur because the universe of
stocks is changing and there are not enough data to learn the parameter c. Because the sample covariance is degenerate, there is an NA of the
estimated Min-Var portfolio.

*p < 0.1; **p < 0.05; ***p < 0.01.

Table 8. Hold for 1 Year, Out-of-Sample Monthly Sharpe Ratio

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 0.369 0.302 0.210 0.289 0.415 0.344 0.216 0.299 0.385 0.349 0.269 0.287
BNVAR 0.362 0.279 0.247 0.289 0.405 0.344 0.271 0.291 0.370 0.346 NA NA
EW 0.242 0.238 0.235 0.245 0.242** 0.239* 0.234 0.228* 0.239** 0.240** 0.202** 0.231*
VW 0.227* 0.226 0.234 0.250 0.236** 0.237* 0.272 0.255 0.233** 0.238** 0.196** 0.211**
EstMinVar 0.369 0.300 0.201 0.295 0.412 0.359 -0.027* 0.119*** 0.192** 0.177*** 0.141*** NA
NoShorting 0.265 0.243 0.304 0.280 0.261** 0.244* 0.314 0.256 0.262* 0.259** 0.251 0.287
L1 0.362 0.302 0.260 0.285 0.402 0.345 0.245 0.258* 0.395 0.356 0.249 0.271
L2 0.367 0.294 0.222 0.296 0.409 0.343 0.214 0.260*** 0.389 0.357 0.248 0.292
PARR 0.351 0.271 0.223 0.270 0.391 0.318 0.224 0.210** 0.272* 0.250* 0.184** 0.273
NonLin 0.368 0.297 0.212 0.292 0.410 0.351 0.206 0.253*** 0.399 0.364 0.243* 0.293

Notes. This table reports the monthly out-of-sample Sharpe ratio. The number in bold is the largest Sharpe ratio for one data set. If the BNVAR

portfolio is available, the p-value is calculated between it and other portfolios. If not, it is between the BN portfolio and others. The NAs of the
BNVAR portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c. Because the sample
covariance is degenerate, there are NAs of the estimated Min-Var portfolio.

*p < 0.1; **p < 0.05; ***p < 0.01.

Table 9. Out-of-Sample Monthly Standard Deviation in Percentage Using 60 Observations

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 4.268 3.972 3.463 3.563 3.740 3.708 3.741 3.504 3.796 3.707 3.582 3.384
BNVAR 4.869** 4.470** 4.170*** 3.563 3.938 4.060* 4.284*** 3.698 3.861 3.896 NA NA
EW 5.418*** 4.916*** 5.732*** 4.308*** 5.348*** 5.107*** 5.712*** 4.900*** 5.414*** 5.204*** 4.624* 4.795***
VW 5.133*** 4.453** 5.817*** 4.031** 4.814*** 4.409*** 5.321*** 4.347*** 4.746*** 4.424*** 4.388* 4.386***
EstMinVar 4.292 3.992 3.611 3.719 4.447*** 4.381*** 7.489*** 11.168*** NA NA NA NA
NoShorting 4.741* 4.296 3.565 3.610 4.518*** 4.262* 3.665 3.615 4.453* 4.202* 3.553 3.341
L1 4.399 4.121 3.800 3.723 3.912 3.942 3.900 4.031** 4.286* 4.418* 3.928 3.462
L2 4.278 3.973 3.505 3.635 3.775 3.726 3.836 3.742 4.047 3.955 3.669 3.119
PARR 4.572 4.129 4.286*** 3.773 4.345*** 4.167* 5.213*** 5.209*** 4.549* 4.722* 4.177*** 3.538
NonLin 4.278 3.947 3.518 3.616 3.742 3.770 3.607 3.590 3.822 3.782 3.485 3.078

Notes. This table reports the monthly out-of-sample standard deviation as a percentage. The number in bold is the smallest standard deviation
for one data set. The p-value is calculated between the BN portfolio and other portfolios. To allow for a fair comparison with the 120-observation
case, we truncate the return to the same period. TheNAs of the BNVAR portfolio occur because the universe of stocks is changing and there are not
enough data to learn the parameter c. Because the sample covariance is degenerate, there are NAs of the estimated Min-Var portfolio.

*p < 0.1; **p < 0.05; ***p < 0.01.
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ratio than the EW portfolio across all the portfolio
data sets.

7.4. Robustness of Training Length
In this subsection, following Brodie et al. (2009), we
show the results using the same data sets but with
only 60 (5-yearmonthly data) observations as training
data. When the length of rolling window n is not
larger than the number of assets p, the sample co-
variance matrix is singular.13 Especially because the
portfolio-construction problem assumes stationarity
over n periods, small values of n are common. Hence,
assessing the performance of portfolio optimization in
the degenerate case (i.e., n ≤ p) is important. By using
60 observations, the sample covariance matrix for
data sets 96FFEW, 96FFVW, 100, and 500 are singular.

The results in Table 9 show that the BN portfolio is
the best on 8 out of 10 portfolio data sets, including
five (of six) large portfolio data sets, and the second
best for the sixth. Comparing Table 5 to Table 9, we

find that the out-of-sample standard deviation of the
BN portfolio is robust to the choice of training length.
We can make the same observation regarding Sharpe
ratios. In fact, BNVAR has the best Sharpe ratio for 8
(of 10) portfolio data sets (Table 10). The reason for
the robustness is that both the BN portfolio and the
BNVAR portfolio become more cautious when train-
ing length becomes smaller. Indeed, the signal space
becomes smaller and the noise bound,m, becomes larger
when fewer observations are available. This happens
because, given γ, the signal/noise split dictated by
Definition 1 makes the signal space smaller, resulting
in a larger noise space and a larger noise bound m.
As shown in Table 9, the out-of-sample standard de-

viations of the L1 portfolio and L2 portfolio increase sig-
nificantly compared with those in Table 5. This change
increases themargin between the standard deviations
of the BN portfolio and other portfolios. For example,
for the data set 96FFVW, the standard deviation of the
BN portfolio is 6% better than that of the L2 portfolio

Table 10. Out-of-Sample Monthly Sharpe Ratio Using 60 Observations

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 0.396* 0.309 0.266** 0.286 0.390*** 0.324*** 0.280* 0.256 0.360* 0.335 0.266 0.298
BNVAR 0.447 0.346 0.338 0.286 0.460 0.397 0.353 0.262 0.396 0.364 NA NA
EW 0.239*** 0.236*** 0.226* 0.242 0.240*** 0.238*** 0.225** 0.222 0.237*** 0.239*** 0.202* 0.230*
VW 0.226*** 0.226*** 0.231* 0.249 0.234*** 0.235*** 0.269 0.249 0.230*** 0.236*** 0.195** 0.210*
EstMinVar 0.421 0.324 0.236*** 0.277 0.406* 0.314*** 0.121*** 0.081*** NA NA NA NA
NoShorting 0.274*** 0.259** 0.304 0.276 0.259*** 0.244*** 0.319 0.260 0.268*** 0.257*** 0.239 0.281
L1 0.422 0.327 0.314 0.264 0.402** 0.310*** 0.299 0.236 0.295** 0.295** 0.185*** 0.263
L2 0.423 0.315 0.257** 0.282 0.394** 0.324*** 0.277* 0.225 0.327** 0.312** 0.208** 0.268
PARR 0.399 0.328 0.421* 0.347** 0.389** 0.329* 0.308 0.205 0.325* 0.321 0.236 0.314
NonLin 0.410 0.320 0.242** 0.284 0.416* 0.330** 0.277** 0.225* 0.361* 0.330 0.224** 0.275

Notes. This table reports the monthly out-of-sample Sharpe ratio. The number in bold is the largest Sharpe ratio for one data set. If the BNVAR

portfolio is available, the p-value is calculated between it and other portfolios. If not, it is between the BN portfolio and others. To allow for a fair
comparisonwith the 120-observation case, we truncate the return to the same period. TheNAs of the BNVAR portfolio occur because the universe of
stocks is changing and there are not enough data to learn the parameter c. Because the sample covariance is degenerate, there is an NA of the
estimated Min-Var portfolio.

*p < 0.1; **p < 0.05; ***p < 0.01.

Table 11. Sensitivity Analysis of γ: γ � 0.25 as the Benchmark

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

Out-of-sample monthly standard deviation, using 120 observations
BNγ � 0.15 −1.08% −0.08% 0.28% −1.20% 0.87% 0.47% 1.00% 2.16% −0.18% −0.57% −1.09% 0.41%
BNγ � 0.40 0.01% −0.07% −0.44% 0.15% −0.36% 0.18% −0.70% 1.26% 1.04% 0.60% 1.01% −1.03%

Out-of-sample monthly standard deviation, using 60 observations
BNγ � 0.15 1.63% −0.12% 0.33% −0.03% 3.26% −0.07% 0.26% 0.63% −0.19% −0.25% 0.06% 1.68%
BNγ � 0.40 0.65% 0.58% 0.96% 1.19% 0.33% 0.09% −0.36% 1.52% −0.65% 0.03% 0.12% −0.41%

Out-of-sample monthly Sharpe ratio, using 120 observations
BNVARγ � 0.15 2.19% −0.35% −0.63% 0.13% −1.54% −0.86% −2.92% 0.68% 0.13% 0.57% NA NA
BNVARγ � 0.40 −0.21% 0.42% −0.83% 2.67% −0.48% 1.34% 0.61% 2.39% −2.49% 0.87% NA NA

Out-of-Sample Monthly Sharpe Ratio, Using 60 Observations
BNVARγ � 0.15 −1.03% −2.29% −0.80% 0.80% −1.63% −3.29% 1.35% −1.71% −0.09% −1.44% NA NA
BNVARγ � 0.40 0.37% −0.92% 1.10% −0.25% −2.46% 0.09% 1.08% 0.37% −3.31% −6.16% NA NA

Note. The NAs of the BNVAR portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c.
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and 11%better than that of theL1 portfolio. The intuitive
reason is that, unlike the bounded-noise procedure, cross-
validation is unable to generate a more conservative
portfoliowhen there are fewer data. In fact, in about 36%
of the timeperiods, the penalty parameter [Equation (1)]
with 60 observations η60 is smaller than η120.

7.5. Robustness of Model Parameters
There are two model parameters in the BN portfolio:
the number of bootstraps, L, and the cutoff of the
amplification ratio, γ. We find that L � 100 generates
almost identical results as L = 1,000, whose results are
reported in the previous subsections.

Table 12. Out-of-Sample Monthly Kurtosis

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 5.356 4.729 5.766 4.114 5.170 4.768 7.031 5.907 5.546 5.536 4.937 6.183
BNVAR 6.265 4.199 4.536 4.114 4.716 4.601 5.205 5.878 5.243 5.874 NA NA
EW 6.380 6.015 6.343 5.290 6.415 6.078 6.866 6.145 6.353 6.070 4.970 5.783
VW 5.427 5.087 5.898 4.952 5.406 5.113 6.480 5.687 5.221 5.130 4.755 5.105
EstMinVar 5.356 4.748 5.800 4.062 5.209 4.667 91.026 323.514 3.900 4.315 3.725 NA
NoShorting 6.045 5.280 6.742 4.207 5.901 5.692 7.722 5.563 5.287 5.653 4.344 5.233
L1 5.612 4.762 6.833 4.156 4.974 4.952 7.214 5.915 5.633 5.339 4.305 6.311
L2 5.350 4.716 6.411 4.237 5.287 4.969 6.618 6.536 5.734 5.777 4.888 5.791
PARR 5.448 4.336 8.264 3.925 5.346 4.322 8.675 7.254 4.663 4.324 5.197 5.636
NonLin 5.433 4.664 5.791 4.083 5.204 4.555 5.826 6.448 5.492 5.285 4.735 5.642

Notes. This table reports the monthly out-of-sample kurtosis. The number in bold is the smallest kurtosis for one data set. The NAs of the BNVAR

portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c. Because the sample covariance
is degenerate, there is an NA of the estimated Min-Var portfolio.

Table 13. Hold for 1 Year, Out-of-Sample Monthly Kurtosis

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 5.669 10.916 15.239 3.968 5.781 4.842 22.989 6.288 5.873 5.648 4.961 5.993
BNVAR 16.534 42.615 4.113 3.968 15.018 12.866 5.186 6.173 10.550 7.382 NA NA
EW 6.349 6.026 6.130 5.331 6.424 6.064 6.604 6.118 6.329 6.042 4.936 5.799
VW 5.467 5.135 5.692 5.018 5.421 5.132 6.504 5.745 5.113 5.065 4.759 5.117
EstMinVar 5.669 13.045 16.512 4.001 5.863 5.066 191.482 173.946 4.341 10.777 5.872 NA
NoShorting 6.359 5.293 6.667 4.190 5.748 5.623 7.239 5.700 5.355 5.478 4.071 4.828
L1 5.985 13.127 6.009 4.131 5.120 5.036 11.351 7.520 5.564 5.873 5.039 5.234
L2 5.651 12.961 11.516 4.109 5.410 5.003 18.356 7.317 6.160 6.215 5.241 5.558
PARR 5.628 11.732 5.426 3.854 5.136 5.555 5.652 5.965 6.795 9.995 5.117 5.105
NonLin 5.585 12.203 15.135 4.002 5.891 4.746 17.817 6.935 6.112 5.713 5.080 6.103

Notes. This table reports the monthly out-of-sample kurtosis. The number in bold is the smallest kurtosis for one data set. The NAs of the BNVAR

portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c. Because the sample covariance
is degenerate, there is an NA of the estimated Min-Var portfolio.

Table 14. Out-of-Sample Monthly Kurtosis Using 60 Observations

Portfolio 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 6.256 6.231 6.655 4.983 5.592 6.472 6.540 6.905 6.179 6.672 4.998 6.154
BNVAR 5.091 5.170 4.995 4.983 5.426 6.294 4.811 6.780 6.007 6.317 NA NA
EW 6.380 6.015 6.343 5.290 6.415 6.078 6.866 6.145 6.353 6.070 4.970 5.783
VW 5.427 5.087 5.898 4.952 5.406 5.113 6.480 5.687 5.221 5.130 4.755 5.105
EstMinVar 5.645 5.984 6.275 4.632 5.195 5.122 39.597 207.774 NA NA NA NA
NoShorting 6.015 6.539 6.884 4.721 5.832 6.769 7.490 6.197 6.019 6.776 4.843 5.670
L1 6.218 6.262 6.660 5.151 5.654 6.135 11.028 6.570 4.678 6.326 5.985 5.572
L2 5.944 5.987 7.112 5.047 6.359 6.649 11.523 6.854 5.802 6.691 5.206 6.657
PARR 6.031 5.489 5.752 4.429 5.551 5.386 8.483 5.133 5.546 5.376 4.357 5.546
NonLin 5.679 6.033 6.584 4.811 5.523 5.927 5.523 7.004 6.316 6.546 5.161 6.391

Notes. This table reports the monthly out-of-sample kurtosis. The number in bold is the smallest kurtosis for one data set.The NAs of the BNVAR

portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c. Because the sample covariance
is degenerate, there are NAs of the estimated Min-Var portfolio.
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Table 11 reports the sensitivity with respect to γ
by measuring the percentage differences in standard
deviations and Sharpe ratios of portfolios obtained
using our preferred values (γ � 0.25) and alternative
values (γ � 0.15 and 0.40). For the BN portfolio, the
differences are around 1%. For the BNVAR portfolio,
the differences are still mostly smaller than 2%.

7.6. Robustness to AlternativeMeasures of Tail Risk
To verify that optimization for variance does not lead
to unwanted increases in tail risk, we compared the
kurtosis for all methods. Table 12 reports the monthly
out-of-sample kurtosis by using 120 previous observa-
tions, whereas Tables 13 and 14 provide robustness
checks for 1-year holding period and 60 observations,
respectively. ESTMINVAR performs particularly poorly
for the 48IndEW and 48IndVW data sets, but other-
wise, all the methods are roughly similar. These re-
sults suggest that the outperformance of BN and BNVAR

may not have come at the expense of large increases
in tail risks.

8. Concluding Remarks
The essence of the paper lies in recognizing that the
primary problem in constructing well-performing
portfolios does not come from estimation alone. Er-
rors in the estimation are amplified by the optimi-
zation step, resulting in even unbiased small errors
causing biased and unacceptable errors in portfolio
weights. The usual route to fix this is by either trying
to improve estimation or adjusting the optimization
step in an arbitrary manner, which may reduce the
impact of estimation errors. Instead, we disentangle
the covariance matrix into two parts: one that behaves
well in the optimization step, which we call the signal
part, and another that does not, which we call the
noise part. We detail and discuss the way to split, how
we can construct portfolios from each of these, why
the noise is useful, how to combine the two portfolios,
relevant mathematical justifications, relations to other
methods, an extension that allows the construction of
mean-variance portfolios, and, finally, evidence of su-
perior performance using both the simulated and the
real-world data.

There are several aspects of portfolio analysis that
could benefit from further investigation. The signal/
noise split and the related optimal portfolios rely
heavily on the investor having no additional con-
straints. Extending the splitting idea in the context of
optimal portfolios with additional constraints is very
valuable, although challenging. Pushing the ideas in
the paper, more along the mean-variance direction,
would be another good direction for future work. The
method we describe for constructing mean-variance
portfolios does not directly deal with uncertainty in
estimates of the mean returns. Another useful extension

would be to allow the user to specify shocks or black-
swan events and construct a portfolio that could be
robust against such events. Finally, regarding extend-
ing the core idea, although we consider a hard split
between signal and noise eigenvectors, there is a con-
tinuum. A careful characterization of every eigenvector
along this continuum may lead to better performance.
However,webelieve that thiswouldonly havea second-
order improvement. Similarly, we computed the split
and noise bound via a median of bootstrap samples.
A more careful analysis could use the full distributions
derived from these samples.
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Endnotes
1Note that eigenvectors of the covariance matrix are precisely
the principal components of the data (whose mean has been
removed).
2For a more detailed discussion, please see Ledoit and Wolf (2012,
2017) and the references therein.
3Our definition of realized variance is slightly different from some in
the literature. For example, Hansen and Lunde (2006) directly use the
square of returns without subtracting the sample mean. This defi-
nition is reasonable when the sample mean is close to 0 and much
smaller than the sample variance. This argument is validated in
studies that use daily data. However, we use monthly data, and the
sample mean is not negligible.
4 If λi � λi+1, it is impossible to estimate vi or vi+1 accurately. How-
ever, their amplification ratios can be close to 1.
5 If one is extremely concerned about the portfolio from the noise
space, one can assign infinity as the upper bound for all these
portfolios. This leads to the signal-only portfolio.
6The performance suffers when the upper bound is less than 1.5
because we have not taken advantage of enough information. The
result is almost the same for values both at and larger than 1.5.
7The penalty parameter is chosen by leave-one-out cross-validation,
as in DeMiguel et al. (2009b). We do a bisection search within the
interval [10−4, 104] to find the parameter with the lowest cross-
validated standard deviation. This “best” parameter is then used
to build a portfolio using the entire 120 monthly returns.
8 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data
_library.html.
9We only include the stocks whose returns are available for the past
10 years and the future 1 year.
10The number of asset changes for each update is 2.5 and 50 on
average for the 100 and 500 stock data sets, respectively.
11We use the phrase large data sets when the number of assets, p, is
larger than 10.
12 p < 0.05 (Levene’s test).
13 In the calculation of the sample covariancematrix, the sample mean
is subtracted. Thus, when n ≤ p, the rank of the sample covariance
matrix is at most n − 1, which is smaller than p.
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