
Dispatching Automated Guided Vehicles in a Container Terminal

Yong-Leong Cheng, Hock-Chan Sen, Karthik Natarajan

Singapore-MIT Alliance Program

Chung-Piaw Teo∗

National University of Singapore

Kok-Choon Tan

PSA Corporation

May 23, 2003

∗Corresponding author. Email: bizteocp@nus.edu.sg. Research partially supported by a fellowship from the

Singapore-MIT Alliance Program in High Performance Computation for Engineered Systems

1

Abstract

Automated guided vehicles (AGVs) are increasingly becoming the popular mode of container

transport in seaport terminals. These unmanned vehicles are used to transfer containers between

ships and storage locations on land. The efficiency of a container terminal is directly related to

the amount of time each vessel spends in the port. Hence to maintain competitive advantage

and increase the efficiency of the container terminal it is necessary to determine the appropriate

number of AGVs to deploy, and formulate good dispatching strategies for these AGVs.

Existing techniques available in the literature use a variety of heuristic methods for dispatch-

ing the automated guided vehicles. These methods have been primarily developed to work in

a manufacturing context where the network structure is simple and only a small number of

such vehicles are required. The situation in seaport terminals however entails a greater net-

work complexity and also a large fleet of 80 or more automated guided vehicles. There is little

experimental evidence on how these techniques perform in a container terminal environment.

Furthermore, for the handful of papers on AGV dispatching in a terminal environment, to the

best of our knowledge, none of the proposed methods have explicitly considered the effects of

congestion to determine the appropriate number of AGVs to deploy.

In this paper, we address this gap in existing research. We present a network flow formulation

for the dispatching problem of the automated guided vehicles. This formulation can be efficiently

solved to obtain deployment strategies for large network sizes. Furthermore, our objective is

formulated in a way to minimize the waiting time of the AGVs at the berth side, reducing

the possibility that the AGVs will be clustered near there. Simulation results verify that the

network flow-based technique significantly increases the throughput of a container terminal. As

a by-product, the simulation model can also be used to determine the appropriate number of

AGVs to deploy.

Keywords: Automated guided vehicles, Container terminal, Network flow, Simulation, Vehicle

scheduling, Port throughput.

2

1 Introduction

In 1966, the first deep-sea container service was introduced for the transport of general cargo in

containers. A shipping container is a box designed to enable goods to be delivered from door to door

without the contents being physically handled. The most common sizes are the 20 footers (6.1m

long, 2.4m wide and 2.6m tall), and the 40 footers (12.2m long, with the same width and height

as the 20 footers). Since its inception, container shipping has become a popular mode to convey

products of all types, especially those of high-value. Decreasing costs, lower rates of transport, rising

customer demand, and globalization of trade have caused a steady increase in the use of containers

for sea borne cargo. Consequently, container terminals have become an important component

of logistic networks. To satisfy customer demand, it is paramount that ships are unloaded and

loaded promptly at the port. According to industry estimates (see Chan and Huat [6]), the typical

operating cost for, say a Post Panamax vessel per day, can easily come to US$ 30,000 (cf. Table

1). Given the high operating cost, it is imperative that vessel operators maximize the yields and

the number of voyages made by each vessel.

Table 1: Operating cost for a typical post Panamax vessel.

US$/day

Vessel Depreciation Cost (25 years life span) 10,000

Fuel Cost (18 knots cruising speed) 10,000

Wages, Maintenance and Insurance 10,000

The above consideration necessitates the development of highly sophisticated container trans-

portation systems, which allow for efficient movement within the container terminal area. As a

result, terminal operators over the world have been increasingly pressurized to provide better and

faster service to vessel operators. A major challenge in port management is thus to reduce the

turnaround time of the container ships. This can be achieved in various ways:

• Deploy more quay cranes per vessel. This is however constrained by the length of the vessels

and also the minimum distance required between cranes.

• Improve the handling rate of the individual cranes, by increasing the speeds and semi-

automation features of the cranes.

• Improve reliability and maintainability of the cranes, so as to minimize the amount of reworks.

• Train and use skilled operators to man the cranes.

3

• Provide efficient yard handling and horizontal transportation systems for the loading and

discharging/unloading operations.

In this paper, we will focus on the challenges posed by the last method, specifically improving the

performance of the horizontal transportation system using an AGV system.

We start by providing a brief overview of the flow of operations that occur when a ship enters

the port. When a vessel arrives at the container terminal for transshipment, there are two types

of operations that need to be carried out. These are to discharge containers from and/or to load

containers onto the vessel. Containers are first discharged from the vessel onto AGVs by quay

cranes (cf. Figure 1).

Figure 1: Quay cranes loading/discharging a vessel.

The AGVs then transport the containers to specific storage locations in the yard area where

they are dismounted from the AGVs by yard cranes. Typically, outgoing containers are loaded onto

the ship after the majority of incoming containers have been discharged. The outgoing containers

from the yard are mounted onto the AGVs using yard cranes. These containers are then carried

by AGVs from the yard to the quay area where they are loaded onto the ship by a quay crane.

As mentioned earlier, containers handled by the terminal are typically of two standard sizes:

twenty-footer (one TEU) or forty-footer (two TEUs). An AGV may carry a box of one TEU or

two TEUs, or carry 2 boxes of one TEU each. When a container is discharged from a vessel, it is

lifted by a proximate quay crane and mounted directly onto an AGV without first landing it on

the ground. Landing a container onto the ground necessitates an additional crane operation to lift

it from the ground and mount it later onto the AGV, thus reducing the throughput of the whole

operation. In order to not delay the progress of the operations, an AGV needs to be readily present

near the crane when a container needs to be loaded onto or discharged from a vessel.

4

The container terminal considered in this paper is based on the layout and operations of a local

port operator in Singapore. As one of the world’s leading port operators, it plans to automate the

container transportation operations by implementing an AGV system in its newest terminal. The

scale of the AGV operations in mega container terminals is typically very large, with free ranging

AGVs moving in a complicated network of lanes and junctions. A complex layout of the AGV

system consists of a network of lanes and junctions shown in Figure 2.

Figure 2: Layout of the terminal.

The AGVs transport containers between the quayside and yard side storage areas. These

bi-directional AGVs have an advanced navigation system that guides them through the complex

network transferring containers from multiple origins to multiple destinations efficiently. Typical

operational, planning and control problems in such a system are: dispatching AGVs to transporta-

tion jobs, routing of AGVs and controlling traffic in the network of lanes and junctions. The

dispatching module assigns each transportation job to one of the available AGVs. The dispatched

AGV will then be instructed to follow the route determined by a routing module, which has details

of lanes and junctions to be taken from the origin of the job to its destination.

For the sake of operation safety, the complicated network of lanes and junctions is partitioned

into a large number of zones with a restrictive vehicle movement rule. Only one AGV is allowed

to occupy a particular zone at any time; thus, any other AGV wishing to use the zone has to wait

outside for movement clearance. As the throughput rate of an AGV system depends on the size

of each zone; the bigger the zone is, the lower the rate. Typically, the minimum size of a zone is

approximately equal to the distance required to stop an AGV from its top speed through the use

of a normal controlled braking mechanism. The time required for stopping the AGV is generally

less than 10 seconds.

Due to the dynamic nature of terminal operations, breakdown of AGVs or container handling

5

equipment, unexpected delays in container handling, etc., the planned route of an AGV could

interfere with that of another AGV. This in turn leads to a delay in the completion time of trans-

portation jobs involved. For example, when an AGV takes a turn, if there is a vehicle within a

certain distance, it may lead to a collision. This is different from routing systems in communication

networks where such physical constraints are non-existent. Such issues need to be taken care of by

the navigation system along with a host of other conditions that need to be checked by a particular

vehicle before it moves.

On top of the complex navigational and control problems faced in the design of such a system, we

need to ensure that the AGVs are utilized in a highly efficient manner, to minimize the turnaround

time of vessels in the port. Clearly having too many AGVs roaming in the network is not a cost-

effective way to reduce the turnaround time of vessels. Furthermore, due to the added congestion,

deploying more AGVs than necessary may in fact slow down the entire system and lead to reduced

throughput.

Under this rather complex setting, we focus in this paper on developing efficient dispatching

techniques that assign AGVs to container jobs. Our main contributions are as follows:

• By focusing on the work rate optimization issue associated with the quay cranes, we refor-

mulate the AGV dispatching problem as a network flow problem. Our model is similar to the

classical tanker-scheduling problem (cf. Ahuja et al. [1]), and a similar reformulation that

has been reported in the literature (cf. Vis et al. [24]). While earlier models focus on finding

the minimum number of AGVs needed to service the vessels (a static problem), the novel fea-

ture in our approach is the explicit formulation of waiting time minimization as our primary

objective (a dynamic problem). This gives rise to a minimum-cost network flow formulation

for the problem of dispatching AGVs to container jobs. For AGVs with unit capacity, solving

the minimum-cost-flow network model provides an effective assignment of AGVs to container

jobs. Furthermore, this model can be incorporated into a real time dynamic AGV dispatching

system, since this problem can be solved efficiently in practice.

• To the best of our knowledge, none of the studies on the AGV dispatching problem in the

literature explicitly consider the impact of congestion on the performance of the dispatching

algorithm. Overlooking this important aspect, may lead to an erroneous conclusion that the

performance will improve as more AGVs are deployed. In fact, due to the complicated zone-

based navigational routines and space restrictions, the throughput of the terminal is largely

dependent on the number of AGVs deployed. Using an AGV deadlock prediction package

developed earlier by the group (cf. Moorthy et al. [20]), we embed the dispatching algorithm

within the simulation package to examine the performance of the dispatching algorithm in a

6

dynamic setting. As a benchmark for comparison, we have compared our algorithm with the

performance of a widely used greedy dispatching algorithm. Our simulation results show that

the proposed method performs significantly better than the existing greedy heuristic used to

dispatch AGVs. By carefully taking care of the effect of deadlocks and congestion caused

by the AGVs, our simulation system can actually be used to obtain the optimal number of

AGVs to be deployed in the system. In fact, the simulation shows that the throughput of the

system suffers if too many AGVs are deployed in the system.

Structure of the paper:

In Section 2, we review some of the previous work done in the scheduling literature primarily in

the seaport context. Section 3 describes our modeling approach to the AGV dispatching problem.

In Section 4, we describe a greedy heuristic that has been previously proposed for these class of

problems. Section 5 deals with the proposed network flow model for the problem. We discuss the

connection between the two algorithms in Section 6. To address issues of network congestion, and

to facilitate proper empirical performance comparison, we need to augment the vehicle-dispatching

scheme with a deadlock prediction and avoidance mechanism. In Section 7, a deadlock prediction

and avoidance scheme that has been implemented is described. In Section 8, we present simulation

results to quantify the improvements provided by the new method. Finally, we discuss future

research possibilities in Section 9.

2 Literature Review

Over the past few years there has been a huge amount of research focused on improving the design

and operation of container terminals. This is in response to the enormous increase in the number

of containers being used in sea transportation and the concomitant increase in the complexity of

container terminal operations. For excellent reviews on the different strategic and operational issues

that arise at container terminals, the reader is referred to the articles by Meersmans and Dekker

[17] and Vis and Koster [23]. Scheduling of AGVs for container transport is one of the key problems

identified in these papers.

Bish [4] considers an integrated problem of determining storage locations for containers along

with AGV and crane allocation to minimize the maximum time taken to serve a set of ships. This

problem is shown to be NP-hard and a heuristic is proposed for it. In a similar vein, Meersmans

and Wagelmans [18], and [19] consider the AGV and crane allocation problem simultaneously and

develop a Beam Search heuristic for this problem. While these approaches focus on joint scheduling

problems, we concentrate in this paper on the AGV scheduling problem only.

7

With specific reference to the scheduling of AGVs, most research has been done in the context

of Material Handling Systems. Co and Tanchoco [7] work with the assignment of transportation

equipment to service requests on the shop floor. With assumptions of a fixed shop layout with

predetermined material flow paths and fixed fleet sizes, the problem is modeled as a mixed integer

program. Egbelu and Tanchoco [10] develop some heuristic rules for dispatching AGVs in a job

shop environment. The heuristics are predominantly either job-based or vehicle-based. Job-based

approaches develop heuristics by selecting the nearest vehicle, the farthest vehicle, the longest

idle vehicle or the least utilized vehicle to serve the most tightly constrained jobs. Vehicle based

approaches on the other hand try to minimize the unloaded travel times in order to maximize the

opportunities for jobs to be scheduled. Shortest travel time, longest travel time, maximum outgoing

queue size and first-come-first-served are some of the vehicle-based approaches considered.

Kim and Bae [13] propose mixed integer programming formulations for the AGV dispatching

problem under a discrete event time setting. These event times correspond to pickup and delivery

times for the containers. For a single quay crane with specified event times to be met, the problem is

reduced to an assignment problem. For general cases wherein event times cannot be met, a heuristic

is developed. Chen et al. [8] propose a vehicle-based dispatching strategy for a mega container

terminal. The heuristic proposed deploys vehicles to the earliest possible container jobs once the

vehicle is free. This vehicle based greedy heuristic does not presuppose any known information on

the sequence of jobs available. Bose et al. [5] obtain an initial solution using either a job-based or

vehicle-based approach and subsequently improve on it via an evolutionary algorithm. However,

these algorithms only perform well for systems with small numbers of jobs and vehicles. Akturk and

Yilmaz [2] propose an algorithm to schedule vehicles and jobs in a decision-making hierarchy based

on mixed integer programming. Their micro-opportunistic scheduling algorithm (MOSA), combine

job-based and vehicle-based approaches into a single algorithm. However, the computational time

requirements for MOSA become impractical when the job number or the size of vehicle fleet is large.

Using neural network models to model the decision processes of expert dispatchers is considered

by Potvin et al. [21] and [22]. Vis et al. [24] consider the tactical problem of determining the

number of AGVs needed at semi-automated container terminals. This paper is most relevant in

our context, since they use a network flow formulation to determine the number of AGVs needed

at the terminal. In this paper, with suitable modification to the cost function, we show how the

method can be in fact turned into an efficient dispatching scheme.

In practical applications, besides the vehicle-dispatching problem one needs to consider the

possible formation of deadlocks in the AGV system. Lee and Lin [15] and Viswandham et al.

[25] use Petri-net theory to predict deadlock in material handling and AGV systems. The entire

network is considered there in a matrix form. The technique needs matrix vector operations in very

8

large dimensions. Hyuenbo et al. [12] use graph theory to detect impending deadlock situations.

To do this a large number of bounded circuits in the AGV system network needs to be found. Yeh

and Yeh [26] develop efficient deadlock prediction strategies for identifying cycles in a dynamic

directed graph. Developing on this work, Moorthy et al. [20] develop a prediction and avoidance

scheme for cyclic deadlocks. This scheme is considered in greater detail in Section 7 since it will

be incorporated into the simulation to test the performance of the proposed dispatching scheme.

Duinkerken and Ottjes [9] and Evers and Koppers [11] perform simulation studies to analyze traffic

control issues in AGV systems. It should be noted that to implement effective simulation studies,

proper steps must be taken to ensure the accuracy of results from the model. Systematic approaches

to simulation studies have been discussed by Banks et al. [3] and Law and Kelton [14].

3 Problem Description

In this paper, we focus exclusively on AGVs with unit capacity. This can be suitably modified

in practice, by pairing up consecutive jobs if possible, to address the situation where each AGV

can handle up to two 20 TEU containers or one 40 TEU container. This simplification, however,

ensures that the problem remains tractable and that an efficient dispatching scheme can be devised

and implemented in real time. In fact, most of the current literature focuses on AGVs with unit

capacity that is often encountered in container terminals. Henceforth, we will only consider this

situation with unit capacity AGVs.

We assume that yard crane resources are always available, i.e., the AGVs will not suffer delays

in the storage yard location waiting for the yard cranes. This is not a restrictive assumption in

the real implementation, since a good yard storage plan will be able to minimize the amount of

congestion in a particular yard location, and hence reduce the amount of delays suffered by the

AGVs. Furthermore, yard cranes are relatively much cheaper to acquire than quay cranes. Hence,

yard cranes are assumed to be readily available when necessary.

To maintain a highly efficient automated container terminal, it is crucial to reduce the turn-

around time in port of the container ships. This in turn is equivalent to deploying the AGVs in an

effective dynamic manner. Our primary goal is to reduce the time that vessels need to spend in the

port (i.e., makespan) for their loading and discharging operations. We need to deploy the AGVs

such that the jobs are executed as soon as they are ready to be processed. The job ready time,

however, depends on the container locations onboard the vessel, and also the speed/work rate of the

quay cranes. Past research in this area has focused on finding dispatching policies so that the con-

tainers can be processed as early as possible. This, however, leads to complex scheduling problems

that can only be solved optimally for special cases (involving single crane, single job type) or when

9

the number of AGVs to be deployed is small. Instead, we focus on the crane productivity (work

rate), which is measured by the number of containers moved per hour. The problem associated with

minimizing the makespan/turnaround time of the vessel can be converted to one of maximizing the

work rate of the cranes. However in practice, it is not possible to arbitrarily increase the work rate

of the cranes since it is constrained by the ability of the horizontal transportation system to cope

with jobs. There is no point in setting a faster crane rate, since if the corresponding quayside time

for a job is not met, the quay crane has to wait till an AGV comes to serve that specific job. This

in turn reduces the productivity of the quay crane, and affects the deployment ready time of later

jobs served by the quay crane.

For each quay crane, there is a predetermined crane job sequence, consisting of loading jobs, or

unloading/discharging jobs, or a combination of both. For each loading (discharging) job, there is

a predetermined pickup (drop-off) point in the yard, which is the origin (destination) of the job.

Given a specified job sequence, the corresponding drop-off (for loading) or pickup (for discharging)

times of the jobs at the quayside depends on the work rate of the quay cranes. For example,

assuming a work rate of one container every 4 minutes (say), we need the horizontal transportation

system to feed a container to the quay crane in every 4 minutes. This allows us to compute the

appointment time by the quayside for each container job. To minimize the turnaround time of the

vessel, we need to run the cranes at the fastest possible rate such that the AGV deployment system

is still able to cope.

Our primary goal in the AGV dispatching problem is in trying to ensure that we can dispatch

AGVs such that all the imposed appointment time constraints are met. Namely, we need an AGV

to reach the quay crane site in time for a container to be deposited or lifted by the quay crane.

If these constraints are satisfied by the deployment scheme, the terminal operates at the desired

throughput rate. However, a couple of other factors that need to be taken into account in real

AGV deployment systems are:

• Congestion: A situation whereby all AGVs queue up at the quay site can lead to traffic con-

gestion. This is undesirable as it reduces the speed at which AGVs travel/operate, especially

if there are too many near the quayside. This reduction in speed would cause the AGVs to

be late for other jobs that in turn decreases the throughput of the terminal.

To reduce congestion indirectly, we need to try to reduce the idle time of the AGVs at the quay

site. This is the time spent waiting for the quay crane to lift/deposit containers from/onto

it. Hence it is desirable to have the AGV arrive at the quay in a just-in-time fashion. This

performance measure will indirectly reduce the number of AGVs queuing up at the quayside.

Hence we are interested in finding a feasible AGV deployment that minimizes the total waiting

10

time for all the AGVs.

• Late jobs: Ideally, solving our model should provide a feasible deployment of AGVs such that

all the jobs can be processed exactly at the quayside appointment times. However, in practice

this is not possible, due to the limited number of AGVs available and traffic conditions in the

network that may force some AGVs to arrive late for the jobs. In this case, we need to allow

jobs to be served late. However, capturing the impact of the delays into the appointment

times of all future jobs will render the model intractable. This is precisely the bottleneck in

earlier approaches to this problem.

In our model, we will allow jobs to be served late, but we ignore the delays imposed on the

appointment time of all future jobs. Instead, we impose a huge penalty for the jobs to be

served late, and use dynamic replanning to update the problem status in a rolling horizon

format, in order to capture the impact of delays.

Terminology and assumptions:

• We consider the unit capacity case wherein each AGV can carry a maximum of one container,

regardless of size, at any time.

• Let M denote the set of AGVs available, where |M | is the total number of AGVs. For the

AGV dispatching problem, we assume that |M | is fixed and known. In fact, we show that

simulation results can be used to determine the optimal number of AGVs to be deployed.

• Container jobs can be of either the discharging or loading type. Let U and L represents the

set of discharging and loading jobs to be served. The total set of container jobs is represented

by N = U ∪ L where the total number of jobs |N | = |U | + |L|.

• For each container job, we are specified the time at which it must be either picked up (for

discharging) or dropped off (for loading) at the quayside. These predetermined times at the

quay crane are chosen such that for the set of given jobs, the quay crane operates at its

desired productivity level. We denote this pickup/drop-off time for job i ∈ N by ti and refer

to it henceforth as the quayside appointment time for the job.

• At the epoch of (re)planning, the AGV ready time denoted by t̃m is known for all m ∈ M .

This ready time refers to the time that the AGV is ready to start performing a new job

after completing its current job. In reality, at any instant an AGV can be in one of four

states - Retrieving, Delivering, Going to park or Parked. Each of these states, as the names

suggest, corresponds to a different mode of operation for the AGV. As an example, consider

11

the calculation of t̃m for an AGV that at current time t in the state of delivering a loading

job i. The distance that the AGV needs to cover the distance from its current position to the

destination of job i (at the quay side) before it is ready to serve a new job. Thus t̃m is the sum

of the time needed for transportation from the current position to the destination of the job

i (calculated as Distance/Average velocity) and the quay crane operating time at destination

of i (determined by the work rate). Calculation for other states can be done likewise.

• Let Tij denote the travel time between two distinct jobs i and j. The calculation of travel time

between jobs is illustrated in Figure 3. The AGVs are assumed to operate at a known average

Quay

Yard

Source i

Destination i Source j

Destination j

a

b
c

 Tij = a + b + c

Source i

Destination i

Source j

a b

 Tij = a + b

 i-Discharge j-Loading i-Discharge j-Discharge

 i-Loading j-Loading i-Loading j-Discharge

Destination jDestination i

Source j

a b

Tij = a + b

Destination i Source j

 Tij = a

a

Quay

Yard

 DL Case DD Case

 LL Case LD Case

Figure 3: Travel time computation.

speed throughout the transportation operation. Clearly the computation of Tij depends on

12

the type of job i and j. The travel times can be computed once the distance covered, and the

type of operations associated with each job (discharging or loading) is known.

• Let T̃mi denote the travel time from the final destination of AGV m to the source of job i,

at the time of deployment. This travel time can be similarly calculated based on the final

destination of the job that AGV m is currently serving and the type and source of job i.

Under these assumptions, that realistically model the container terminal operations, we develop

a minimum-cost network flow model to obtain an optimal dispatching strategy that minimizes the

total waiting time of the AGVs at the quay cranes (cf. Section 5). It is of paramount importance

that such a model should be solvable quickly in practice as is needed by the seaport container

terminal in real time operations.

4 Greedy Deployment Scheme

Before we present a comprehensive framework for addressing the AGV deployment problem, we

consider a simple and popular heuristic dispatching strategy that has been proposed in the literature

(cf. [8, 10]) for vehicle dispatching. This strategy, which is easy to implement, has been used in at

least one seaport that we are aware of. Its simplicity allows it to be used easily for AGV dispatching

in a dynamic fashion. As there is no published benchmark for this class of AGV dispatching

problems, we will use the greedy deployment strategy (henceforth called GD) as a benchmark to

compare our network flow model with. The working of the GD algorithm is described next.

The goal of the greedy heuristic is to minimize the total time AGVs spend waiting at the quay

crane locations to serve their jobs. The jobs are initially arranged in a first-in-first-out manner

based on the earliest quayside appointment time ti at each quay crane. Suppose we have already

assigned a set of jobs to the AGV, and the next job in the list is considered. We first choose a

list of AGVs that can reach the quay crane location in time after it has completed its previous

job. From this list, we pick the AGV that will incur the minimum waiting time at the quay crane

location for the job. This process is recursively performed as the jobs are scanned. This job list

expands with time as the arrival of new vessels to the terminal necessitates the transportation of

more containers. The GD algorithm is best illustrated with the example below.

Example 1:

Consider a terminal with |M | = 4 AGVs and |N | = 4 container jobs to be processed. The quayside

times for the container jobs are displayed in the Table 2.

From the container job list, the earliest available job 1, is designated to be served first. To job

1, an AGV is assigned such that the AGV that serves it will incur the minimum waiting time. From

13

Table 2: Quay side time for jobs.

Job i Appointment time ti

1 00:30

2 00:31

3 00:32

4 00:36

Figure 4, we note that based on the current positions of the AGV only three AGVs namely 1, 2

and 4 can reach the quay crane location of container job 1 in time before 00:30. Since the waiting

time for AGV 2 is minimum, AGV 2 is assigned to job 1. This procedure is performed recursively

to assign the next few available jobs to AGVs.

AGV 4

AGV 3

AGV 2

AGV 1

Ready time

00:30

Waiting timeTravel Time

Figure 4: Waiting time of AGVs in Example 1.

Dynamic implementation:

We now describe how the greedy strategy can be implemented in a dynamic fashion for the AGV

dispatching problem. In our implementation, the planning of the time to dispatch each job is done

in the following manner: The first k jobs per crane will be assigned an appointed pickup/drop-off

time initially. The (k +1)th job for each crane will only be assigned an appointment time when the

service of the first job at the quay has actually been completed. The assignment of the (k + 2)th

job will depend on the completion of the second job and so on. The number k depends on when

the re-planning should be done based on historical traffic condition. In our implementation, we

used k = 4 for dynamically assigning appointment times to jobs (cf. Figure 5).

Given the time window W between jobs, the quay side time ti (i = 1, . . . , k) for the first k jobs

14

Time2 3 4 5 6 7 81

Time

12:00

Time

12:02 12:04 12:06

1 2 3 54

12:08

12:01 12:02 12:04 12:06 12:09

2 3 4 6

12:02 12:04 12:06 12:10

3 4 7

12:1112:03 12:06

Time

Time

Job 1

Job 2

Job 3

Job 4

Actual
pickup/
dropoff time

4 8

Figure 5: Dynamic assignment of appointment time under GD.

is computed as:

ti = Ship − discharge − time + (i − 1) × W. (1)

The Ship− discharge − time is the time the ship is ready for discharge at the terminal. The time

window W is the interval between successive discharging of containers from the vessels and depends

on the quay crane work rate (i.e. number of containers moved per hour). By setting a time window

of say 4 minutes (i.e. work rate of 15 containers per hour), the operator hopes to work the quay

crane at a rate of one container for every 4 minutes.

For any subsequent job i after the first k jobs, the quay side time is computed as:

ti = Ci−k + k × W. (2)

where Ci−k denotes the actual completion time of the (i − k)th job. Note that Ci−k is available at

the time of deployment of the ith job. Thus given that the ready time for an AGV m is t̃m, the

waiting time for AGV m to serve job i is calculated as:

ti − (t̃m + T̃mi). (3)

Recall that at any instant an AGV can be in one of four states - Retrieving, Delivering, Going

to park or Parked. In our implementation of the GD scheme, for a particular job, only AGVs in the

15

last three status are considered for assignment. An AGV in the first state is on its way to retrieving

a job and hence will not be considered for assignment. For each state of the AGV, the AGV ready

time and the travel times are explicitly computed.

In practice, there will be instances where none of the AGVs can be deployed in time to serve a

particular job. In such situations, the AGV that first reaches the quay crane location of a pending

container job i will be selected to serve that job, even though the AGV cannot arrive before the

appointment time ti.

5 Network Flow Method

We now propose a network flow model to solve the AGV dispatching problem. The optimal deploy-

ment of the AGVs such that the total waiting time is minimized is found by solving a minimum-cost

network flow problem. Such problems can be solved efficiently in practice even for large-scale net-

works [1], making the proposed method extremely attractive. A detailed description of the model

is presented next. Our model can be viewed as an extension of a model proposed by Vis et al.

[24], where our goal is to find a schedule that will minimize the impact of delays and maximize

the utilization of the AGVs. In this regard, we find that the objective to minimize the total AGV

waiting time at the quay is a reasonably good surrogate of the penultimate goal.

We construct a directed graph G(V,E) to represent the complete network where V denotes the

set of nodes and E denotes the set of arcs. The graph is constructed in the following manner.

Every container job i ∈ N (discharging and loading) is represented as a node in G. There is a node

corresponding to each AGV m ∈ M , capturing the state of the AGV at the time of deployment.

We also insert one sink node s corresponding to the end state of the AGVs, after all jobs have been

served. Thus we have a total of |N | + |M | + 1 nodes in the network, denoted as:

V = N ∪ M ∪ {s}.

To define the (directed) arcs in the network, we introduce the following notation. We call an

ordered pair of distinct jobs (i, j) compatible [24] if a single AGV can be used to serve job j (arriving

at the quay side before tj) after serving job i. Hence job pair (i, j) is compatible if:

ti + Tij ≤ tj .

Similarly an ordered pair (m, i) of AGV m and job i is compatible if:

t̃m + T̃mi ≤ ti.

The three types of arcs that connect the various nodes in this directed graph are:

16

• There exists a directed arc from AGV m to a container job i if the AGV and job pair (m, i) is

compatible. The cost of such an arc (m, i) corresponds to the waiting time that the AGV m

incurs at the quay crane location of job i if it is used to serve job i immediately after finishing

the initial job. We assume that the AGV travels at certain predetermined average speed for

this computation. Hence:

Cost between AGV node m and job node i, cmi = ti − (t̃m + T̃mi) ∀(m, i) compatible. (4)

• There exists a directed arc from container job i to container job j if job pair (i, j) is compatible.

The cost of such an arc (i, j) is the waiting time that the AGV incurs if it serves job j

immediately after serving job i. Hence:

Cost between job node i and job node j, cij = tj − (ti + Tij) ∀(i, j) compatible. (5)

• There exists a directed arc from each of the AGV nodes and the container nodes to the sink

node s. These arcs signify that an AGV can remain idle after having served any number of

container jobs or not having served at all. These arcs are assigned a cost of zero. Hence:

cms = 0 ∀m ∈ M, cis = 0 ∀i ∈ N. (6)

However in the practical implementation, it may not be possible to process the jobs within the

specified time restrictions. To obtain a feasible solution in such cases, we introduce arcs between

job pairs (i, j) that are not compatible, i.e., when:

ti + Tij > tj .

Such arcs are highly unattractive as it decreases the quay crane productivity. Hence we weigh the

cost of such arcs with a large penalty value K as:

cij = K(ti + Tij − tj) ∀(i, j) not compatible. (7)

Similar arcs with high costs are introduced between AGVs and jobs for pairs that are not compatible

where the AGV reaches the quay crane location of the job after the quayside time. The set of arcs

in the graph is hence denoted as:

E = {(m, i) : m ∈ M, i ∈ N} ∪ {(i, j) : i, j ∈ N, i 6= j} ∪ {(m, s) : m ∈ M} ∪ {(i, s) : i ∈ N}.

The AGV dispatching problem then corresponds to finding |M | directed paths in this network

(one for each AGV starting from its node and ending at node s), visiting all job nodes once, at

17

minimum cost. Let xij represent the flow on arc (i, j). Mathematically, the problem is formulated

as:
minimize

∑

(i,j)∈E

cijxij

subject to
∑

i∈V :(m,i)∈E

xmi = 1, ∀m ∈ M,

∑

i∈V :(i,j)∈E

xij = 1, ∀j ∈ N,

∑

i∈V :(j,i)∈E

xji = 1, ∀j ∈ N,

∑

i∈V :(i,s)∈E

xis = m,

xij ∈ {0, 1}, ∀(i, j) ∈ E.

(8)

The above problem can be transformed to a network flow problem, using the following well-

known node-duplication technique (cf. Ahuja et al. [1]):

• Split each container job node i ∈ N into two nodes i′ and i′′ and add an arc (i′, i′′). We thus

expand the number of container job nodes from |N | to 2|N |. Let N ′ and N ′′ denote these

two new sets of container job nodes. Hence the set of nodes in the expanded network is:

V ′ = N ′ ∪ N ′′ ∪ M ∪ {s}.

The set of the arcs in this expanded network is:

E′ = {(m, i′) : m ∈ M, i′ ∈ N ′} ∪ {(i′′, j′) : i′′ ∈ N ′′, j′ ∈ N ′, i 6= j} ∪ {(m, s) : m ∈ M}

∪ {(i′′, s) : i′′ ∈ N ′′} ∪ {(i′, i′′) : i ∈ N}.

• We set the upper bound and lower bound on the flow traversing through each arc (i′, i′′) to 1

so that exactly one unit of flow passes through it. The lower and upper bounds on all other

arcs are set to 0 and 1 respectively. We let l′ij and u′
ij denote the lower and upper bound for

each arc (i, j) in the graph.

• The cost of the newly introduced arc (i′, i′′) is set to zero. Transforming the arc costs from

the original model to the new model we obtain:

c′mi′ = cmi, ∀m ∈ M, i ∈ N,

c′i′′j′ = cij , ∀i, j ∈ N, i 6= j,

c′ms = cms, ∀m ∈ M,

c′i′′s = cis, ∀i ∈ N,

c′i′i′′ = 0, ∀i ∈ N.

18

The purpose of this transformation, shown in Figure 6 will ensure that each job is served by one

AGV.

i i’ i’’

Flow = 1

Cost = 0

 Transformation

Figure 6: Transformation of the network.

Formulation (8) is thus reformulated as a minimum cost network flow model as:

minimize
∑

(i,j)∈E′

c′ijxij

subject to
∑

i∈V ′:(m,i)∈E′

xmi = 1, ∀m ∈ M,

∑

i∈V ′:(i,j)∈E′

xij −
∑

i∈V ′:(j,i)∈E′

xji = 0, ∀j ∈ N ′ ∪ N ′′,

∑

i∈V ′:(i,s)∈E′

xis = m,

l′ij ≤ xij ≤ u′
ij, ∀(i, j) ∈ E′.

(9)

The first three constraints in Formulation (9) are standard flow conservation constraints while

the last constraint provides upper and lower bounds on the flow values. It is well known the linear

programming relaxation of the capacitated minimum cost network flow problem can be solved in

polynomial time to yield optimal integral flows. Furthermore specialized algorithms such as the

network simplex method [16] can be used to solve large-scale problems extremely efficiently in

practice. Solving the network flow model generates |M | paths, each of which commences from one

AGV node and terminates at the sink node s. In totality the |M | paths cover all the nodes in the

network only once. Each path from a source AGV node to the sink node prescribes the container

job sequence that the AGV should be assigned to. This deployment strategy is referred to as the

Minimum Cost Flow (MCF) algorithm from hereon.

Dynamic implementation:

In the practical implementation, one needs to consider the effects of uncertainty of traffic conditions

on the job assignment. In a prescribed job assignment, some of the jobs could be late due to

interruptions and this lateness will affect the rest of the later jobs exponentially. Moreover, the

19

solution might not be optimal due to the change of the job status. Thus, re-planning needs to be

done frequently. Hence re-planning is done for each crane after every k number of jobs have been

deployed. At that instant, a new MCF problem will be formulated based on the number of jobs

remaining, the latest status of all jobs and AGVs. Following the GD model, k is selected to be

4. An example of the assignment of the appointed time sequence for 9 jobs for a single crane is

illustrated in Figure 7.

5 6 7 81

Time

Time2 3 4

12:0812:00 12:02 12:04 12:06 12:10 12:12 12:14

4

12:12 12:16 12:1812:14

After deployment
of first 4 jobs

Job 4 actual
service time

Reformulate and solve

Initial job times

5 6 7 8

9

9

12:16

12:20

8

12:17

9

12:21Job 8 actual
service time

After deployment
of second 4 jobs

Time

Reformulate and solve

Figure 7: Dynamic assignment of appointment time under MCF.

Note that unlike the GD algorithm, the MCF algorithm uses the expected appointment time

information of all future jobs to assign the next job to the AGV. The main advantage is that by

doing so, the system is able to anticipate problems that may arise if the AGVs are deployed greedily.

However, the solution obtained is dependent on the expected appointment time of all future jobs

and could be adversely affected if there are delays in serving certain jobs. Hence it is not apriori

clear, whether the dynamic implementation of the MCF algorithm is indeed superior to the GD

algorithm.

6 Performance Comparison

6.1 Single Crane Scenario

The GD algorithm can be viewed as a heuristic way to solve the minimum-cost network flow

problem, since it tries to design |M | paths from the AGV nodes to the sink s in the network, albeit

in a greedy fashion. We first focus on the single crane case when there is only one job type (either

20

discharging or loading jobs, but not mixed). In this case, we show that the GD algorithm actually

gives rise to the optimal minimum-cost flow solution.

Theorem 1 For a single quay crane model with sequences of one type of job, either loading or

discharging, the solution obtained by GD is as good as the solution obtained by the MCF algorithm.

Proof. We consider only the case when the jobs are all discharging jobs. The case when all jobs

are loading jobs can be handled using a similar argument.

Consider the optimal solutions provided by the MCF and GD algorithms for the same set of

discharge jobs N . Suppose both algorithms prescribe identical AGV deployment solutions for the

first (k − 1) container jobs where (k − 1) < |N |, and suppose they differ in their assignment of the

kth job. Let AGV p be assigned to job k by MCF while AGV q is assigned to the same job by GD

where p and q are distinct vehicles.

Since MCF has selected AGV p to serve job k, it means that AGV p will reach the source of job

k (i.e., the quay side, since all jobs are discharging job) before its appointment time. Furthermore,

since GD uses AGV q to serve the same job, we conclude that AGV q will arrive at the quayside

of the crane later than AGV p, but before the appointment time of job k.

Let r be the next discharging job, after job k, assigned to AGV q in MCF. Note that now both

AGVs arrive before the appointment time of both the jobs k and r. Hence we can interchange the

assignments, i.e., using AGV p to serve r and jobs after r served by AGV q previously, and AGV q

to serve job k and subsequent jobs served by AGV p, without increasing the total waiting time of

the two AGVs. In this way, we obtain a new solution to the minimum-cost network flow problem

such that the assignment of the first k jobs are identical to algorithm GD.

By repeating this process for job (k + 1) to |N |, we can transform an optimal solution for the

minimum-cost network flow problem into a solution identical to that given by the GD algorithm

without affecting the total waiting time. Hence GD solves the problem optimally in this special

case.

Note that the assumption that the jobs are all of the same type is crucial for the above to hold.

For example, if job r is a loading job, then the fact that AGV q can be used to serve r (i.e., bringing

the container from yard to the quay side before the appointed time) does not guarantee that AGV

p can also be used to serve r, although AGV p will arrive at the quay side of job k earlier than

AGV q. This happens if AGV q is nearer to the source of job r (in the yard) than AGV p.

21

6.2 Multiple Crane Scenario

The performance of GD algorithm however deteriorates considerably in a multiple crane scenario.

We demonstrate this with a simple simulation experiment.

Consider a multiple crane AGV dispatching problem with 4 quay cranes. The total number of

container jobs is set to 200. Twenty AGVs are used to process these jobs. The container jobs are

randomly generated. The quay crane rate is increased from 30 containers per hour to 75 containers

per hour. The yard crane rate is set to 24 containers per hour. Each AGV is assumed to travel at

an uniform speed. Table 3 displays the simulation results obtained for this problem. For the quay

Table 3: Effect of quay crane rate on waiting time and late jobs.

Quay Crane Rate Waiting time for GD Waiting time for MCF

(Containers per hour) (Minutes) (Minutes)

30.00 255 104

33.33 208 108

40.00 212 90

50.00 155 80

54.55 6 late jobs 2 late jobs

60.00 17 late jobs 5 late jobs

66.67 30 late jobs 6 late jobs

75.00 45 late jobs 8 late jobs

crane rate up to 50 containers per hour, it is observed that both the MCF and the GD algorithms

provide feasible deployment solutions. Up to this quay crane rate, AGVs can be deployed such that

jobs are processed at the quay when it is ready. The total waiting time for the MCF algorithm

is however observed to be as much as fifty percent lesser for these quay crane rates. For the

higher quay crane rates, it is observed that both AGV deployment strategies cause some of the

container jobs to be late. Clearly, the number of late jobs for the MCF algorithm is much lesser

than the number of late jobs for the GD algorithm. This simple experiment clearly shows that the

performance of the MCF algorithm is significantly better than the GD algorithm in the multiple

crane scenario.

22

7 Deadlock Prediction and Avoidance Algorithms

The deployment schemes obtained from the GD and the MCF algorithms provide dispatching rules

for the automated vehicles. In practice, however constrained space near the quayside locations and

fixed paths for AGVs cause deadlocks to occur. Such deadlocks cause part of or the entire system

to stall, further delaying job processing. Hence it is essential to integrate deadlock prediction and

avoidance algorithms with the dispatching algorithms.

The AGV system consists of a complicated network of lanes and junctions that is partitioned

into zones. For operational safety at most one vehicle is allowed to occupy each zone. However it

is possible for a dispatching algorithm to create a cyclic deadlock in the AGV system [20]. This

generic form of deadlock occurs when a chain of vehicles is formed where each vehicle requests for a

zone such that we have a cycle. A cyclic deadlock for four AGVs is shown in Figure 8. To account

for such situations, we need to integrate a deadlock prediction strategy and an avoidance algorithm

with the proposed AGV dispatching algorithm to test its merits.

Zone 1

Zone 2

Zone 3

Zone 4

Figure 8: Cyclic deadlock in zone control AGV system.

7.1 Deadlock Prediction Strategy

In practice, the sample time for the control system of the AGV is very small in the range of 1.5

to 2 seconds. Hence we need to ensure that the deadlock prediction strategy is extremely quick

and effective. As noted in Section 2, previously proposed methods are either too complicated or

computationally expensive to use for this application.

23

We now describe the basic idea of the deadlock prediction algorithm that is used in our model

[20]. For every sampling instant of about 2 seconds, a check is done to see if a specific vehicle i

has moved to a new zone. For each vehicle that changes zones, a deadlock prediction is performed

for its next step. If the next zone is occupied by a different vehicle j, then the vehicle must wait

for the zone to clear. However if the next zone is not occupied, we still need to make sure that

moving into the next zone will not lead to a deadlock that will cause the system to stall. To do

this, we look further and examine the next destination of the AGV after the next zone (which is

called the next-next zone). If this zone is unoccupied, then the vehicle can proceed as no deadlock

can occur. However if the next-next zone is occupied by vehicle k, then the next zone location of

vehicle k is found. The same check is performed to see if this next location is occupied. If not,

then no deadlock is predicted. Else we proceed and check if we create a cycle and come back to the

original next zone of vehicle i. We have a cyclic deadlock in that case. The worst-case complexity of

this algorithm is O(|M |2) where |M | is the total number of AGVs in the network. This worst-case

scenario occurs in case there is a huge cyclic deadlock involving all the vehicles. This algorithm

is an one-zone-step deadlock prediction method. This technique is seen to be effective in practice

from [20].

An example of a cyclic deadlock that is predicted by the algorithm is illustrated in Figure 9.

Here, AGV 1 request to enter it’s next zone 2, which is currently free. However by looking at the

next-next zone of the AGVs, it can be verified that a cyclic deadlock is formed.

AGV 1

1

3

2

5

AGV 1 next-next location

AGV 2 AGV 4

4 AGV 3

Figure 9: Example of cyclic deadlock forming.

24

7.2 Deadlock Avoidance Strategy

The deadlock avoidance scheme is basically a wait and proceed strategy. If a deadlock is predicted

on a vehicle route, it will stop and wait until at least one vehicle is cleared from the region in which

the deadlock is predicted. However implementing the one-zone step deadlock prediction and the

wait and proceed avoidance algorithm might cause other deadlock situations to occur. This form

of deadlock is formed because of multiple loops sharing only one unoccupied node (cf. Moorthy

et al. [20]). An example of such a deadlock is provided in Figure 10 where a cyclic deadlock is

avoided by the wait and proceed strategy but another deadlock is created which has many cycles

that share a single empty resource.

Cycle 1

Cycle 2

AGV 1

AGV 2

AGV 3

Next node of
AGV 1,2,3

Next-next node of AGV 2

Next-next node
of AGV 1,3

Figure 10: Example of multi-cycle deadlock forming.

Moorthy et al. [20] proposed a forward-arc strategy to resolve these deadlocks. For detailed

simulation studies that test and evaluate the performance of these deadlock prediction and avoid-

ance strategies, the reader is referred to [20]. Our primary interest is to integrate these deadlock

prevention strategies with the deployment models.

8 Simulation Studies

The results obtained from the simulations performed to compare the performance of the MCF and

the GD algorithms are provided next.

The simulation study is performed using a discrete event simulation software AutoMod, V 9.0

[27]. The entire system is modeled in terms of its state at each point in time, entities that pass

through the system and events that cause the state to change. Software included with AutoMod

25

is AutoView to perform 3-dimension animation and AutoStat to do statistical analysis. For the

simulation, the performance of the GD and the MCF algorithm integrated with the one-zone-step

deadlock prediction and avoidance algorithms are compared.

Model assumptions:

• The layout of the terminal consist of 4 berths and 16 quay cranes with 4 quay cranes assigned

to each berth.

• We consider AGVs with unit capacity and vary the number of AGVs in the system between

40, 60 and 80.

• Berths are randomly assigned to incoming ships and the arrival of the ship is assumed to

follow an exponential distribution of mean 60 minutes.

• Each container storage yard is made up of 9 clusters wherein each cluster has 3 control points.

At any one time, a quay crane for either discharging or loading process can only use a single

cluster. In the real application, it is possible to move the quay cranes but the movement was

not simulated here.

• The distribution of workload of each quay crane is set to 18%, 25%, 27% and 30% respectively

for the first to fourth quay crane.

• The actual quay crane rate is set to a triangular distribution of (1.375, 1.708, 2.113) minutes.

The yard crane rate is set to a triangular distribution of (1.593, 2.172, 2.728) minutes. The

crane average operating rate is taken to be the average of the 3 given values of the triangular

distribution. This average operating rate is used in the computation of solutions for both the

MCF and the GD algorithms.

• The average velocity of each AGV is important for calculating expected travel times between

two points. To realistically determine this average velocity, the simulation model was run

a few times before the actual simulation by varying the number of AGVs. The collected

statistical data is used to set the average velocity of the AGV in both the models. Based on

this data, the average velocities used in meters per second were 3.573, 3.616 and 3.770 for 40,

60 and 80 AGVs respectively.

For a given set of system parameters, the simulation was run for a deterministic period of 4 days.

In our first simulation, we evaluate the effect of varying the number of AGVs in the container

terminal, maintaining the time window between jobs constant.

26

Variation in the number of AGVs:

The time window between the jobs, W was fixed at 2 minutes. We compare the performance of the

MCF and GD algorithms by varying the number of AGVs in the container terminal. The results

obtained over a period of 4 days is provided in Table 4.

Table 4: Effect of varying number of AGVs on performance.

GD MCF

40 AGV 60 AGV 80 AGV 40 AGV 60 AGV 80 AGV

Number of boxes 17769 20499 21797 18793 21471 22825

Average makespan 7.792 6.213 6.369 7.433 5.910 6.050

Average throughput 53.346 66.297 64.678 58.798 72.660 71.183

The first row in Table 4 measures the total number of container jobs that are served over the

entire period. Clearly, for an identical number of AGVs the deployment scheme provided by the

MCF algorithm serves more jobs than the GD algorithm. Similarly for the remaining two measures:

the average makespan of the ship (i.e. the duration that a ship remains in the terminal for loading

and unloading operations) and the throughput (i.e. the number of boxes processed per hour) the

MCF algorithm significantly outperforms the GD algorithm.

From Table 4, it is observe that as the number of AGVs is increased from 40 to 60, there is a

significant increase in throughput due to the increase in amount of available resources. However

increasing the number of AGVs from 60 to 80, in fact decreases the throughput. The deadlock

effects caused by AGV congestion for a constant layout of the berths is the primary reason for this.

Based on the simulation, in fact we can estimate the optimal number of AGVs to be deployed in

the system, by explicitly consider the effects of congestion. For the current system, about 4 to 5

AGVs per crane per berth seems to be optimal.

The observed mean deviation in time from the appointed times is provided in Table 5. Ideally

Table 5: Effect of varying number of AGVs on mean time deviation.

GD MCF

40 AGV 60 AGV 80 AGV 40 AGV 60 AGV 80 AGV

Early Jobs (min) 3.609 2.290 2.235 2.993 2.078 1.850

Late Jobs (min) 6.589 4.848 5.747 4.518 4.026 4.773

27

we would like the AGVs to have zero waiting time. If we are late then we decrease the quay crane

productivity and if we are early we cause congestion. Clearly from Table 5, the MCF algorithm on

the average outperforms the GD algorithm with respect to the total waiting time. The improve-

ment in deviation of the waiting time for the MCF algorithm over the GD algorithm is in the range

of 15 to 30 percent.

Variation in the time window:

In the second simulation, we evaluate the effect of varying the time window between jobs, main-

taining the total number of AGVs constant. The number of AGVs is held constant at 80 over 4

days while the time window W for the jobs is varied. Other specifications for the 4-berth model

remain the same as before. The time between jobs is varied between 1.8, 2 and 2.5 minutes. Similar

to the previous simulation, we measure the total number of container jobs that are served, average

makespan and the throughput of the terminal. The results are displayed in Table 6. Clearly, the

Table 6: Effect of varying duration of time window on performance.

GD MCF

1.8 min 2 min 2.5 min 1.8 min 2 min 2.5 min

Number of boxes 21333 21797 20726 22618 22825 21762

Average makespan 6.889 6.369 6.533 6.577 6.050 6.200

Average throughput 63.264 64.678 63.558 70.186 71.183 70.202

throughput for the MCF model is yet again about 10% higher than the GD algorithm. As the time

window increases from 1.8 to 2 minutes, the throughput for both the algorithms increase. However

on increasing the time window from 2 to 2.5 minutes, the throughput for both the algorithms de-

crease. This is because for the tight time window of 1.8 minutes, more jobs will be late as the AGVs

cannot keep up with the crane productivity level. However for a loose time window of 2.5 minutes

the AGVs reach the quay crane before the job is ready, causing congestion and hence decreasing

the throughput on a whole.

These results clearly indicate that the proposed MCF algorithm outperforms the GD algorithm.

An increase of as much as 10% in throughput is observed. Furthermore the tradeoff between faster

processing and increased congestion caused by increasing the amount of AGVs is evident. We can

in fact, estimate the number of AGVs to deploy at the container terminal based on this tradeoff.

28

9 Conclusions and Future Research

A container terminal must operate efficiently to ensure that the time in port for seaport vessels

are reduced. This in turn entails formulating efficient dispatching strategies to load and discharge

containers from the vessels. In this paper, we focused on finding efficient deployment strategies for

AGVs to perform these operations. Current techniques use a simple greedy heuristic to solve this

problem. In this paper, a new technique based on a network flow formulation is proposed for the

dispatching of AGVs with unit capacity. This technique has two distinct advantages. One is that

it provides an optimal solution to the problem if the goal is to minimize the total waiting time of

AGVs. The improvement in the performance in seen to be significant from the simulation studies.

Furthermore this solution can be computed extremely efficiently in practice even for a large AGV

network. Thus the proposed algorithm is extremely suitable for the AGV deployment problem in

complex and large seaport container terminals.

The network flow technique proposed is applicable for AGVs with unit capacity as is the case

in many automated terminals. In the particular terminal considered, the AGV has the additional

feature of carrying two units of load. An efficient model to obtain dispatching strategies under the

multiple load capacity is an interesting and open problem. Extensive simulation studies for the

case of multiple unit capacity need to be performed to compare the performance relative to the

unit capacity case. Another feature of our model is that it is completely deterministic. However

in practice there may be some randomness involved especially in travel times of AGVs and the

processing times of jobs. Efficient models to solve such stochastic models is another area of future

research.

References

[1] Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network Flows: Theory, Algorithms and Applications.
Prentice Hall.

[2] Akturk, M.S., H. Yilmaz. 1996. Scheduling of automated guided vehicles in a decision making hierarchy.
International Journal of Production Research. 34, 2, 577-591.

[3] Banks, J., J.S. Carson, B.L. Nelson, D.M. Nicol. 2001. Discrete-Event System Simulation. 3rd Edition,
Prentice Hall.

[4] Bish, E.K. 2003. A multiple-crane-constrained scheduling problem in a container terminal. European
Journal of Operational Research. 1441, 83-107.

[5] Bose, J., T. Reiners, D. Steenken, S. Voβ. 2002. Vehicle dispatching at seaport container terminals using
evolutionary algorithms. Proceedings of the 33rd Annual Hawaii International Conference on System
Sciences. R.H. Sprage (Ed), IEEE, Piscataway, 1-10.

[6] Chan, C.T., L.H. Huat. 2002. Containers, containerships and quay cranes: a practical guide. Singapore:
Genesis Typesetting & Publication Services.

29

[7] Co, C.G., J.M.A. Tanchoco. 1991. A review of research on AGVS vehicle management. Engineering
Costs and Production Economics. 32, 35-42.

[8] Chen, F.Y., E.K. Bish, Y.T. Leong, Q. Liu, B.L. Nelson, J.W.C. Ng, D. Simchi-Levi. 1998. Dispatching
vehicles in a mega container terminal. INFORMS, Montreal, Canada.

[9] Duinkerken, M.B., J.A. Ottjes. 2000. A simulation model for automated container terminals. Proceedings
of the Business and Industry Simulation Symposium. Washington, ISBN 1-56555-199-0. ISCS.

[10] Egbelu, P.J., J.M.A. Tanchoco. 1984. Characterization of automatic guided vehicle dispatching rules.
International Journal of Production Research. 22, 3, 359-374.

[11] Evers, J. J. M., S. A. J. Koppers. 1996. Automated guided vehicle traffic control at a container terminal.
Transportation Research A. 30, 1, 21-34.

[12] Hyuenbo, C., T.K. Kumaran, Richard, A. Wysk. 1995. Graph theoretic deadlock detection and res-
olution for flexible manufacturing systems. IEEE Transactions on Robotics and Automation. 11, 3,
413-421.

[13] Kim, K.H., J.W. Bae. 2000. A dispatching method for automated guided vehicles to minimize delays of
containership operations. International Journal of Management Science. 5, 1, 1-25.

[14] Law, A.M., D.W. Kelton. 1991. Simulation Modeling and Analysis. 2nd Edition, McGraw-Hill.

[15] Lee, C.C., J.T. Lin. 1995. Deadlock prediction and avoidance based on Petri nets for zone control
automated guided vehicle systems. International Journal of Production Research. 33, 12, 2349-3265.

[16] Lobel, A. 2000. MCF - A network simplex implementation version 1.2.
http://www.zib.de/Optimization/Software/Mcf/index.html.

[17] Meersmans, P. J. M., R. Dekker. 2001. Operations research support container handling. Econometric
Institute Report EI 2001-22.

[18] Meersmans, P.J.M., A.P.M. Wagelmans. 2001. Effective algorithms for integrated scheduling of handling
equipment at automated container terminals. Econometric Institute Report EI 2001-19.

[19] Meersmans, P.J.M., A.P.M. Wagelmans. 2001. Dynamic scheduling of handling equipment at automated
container terminals. Econometric Institute Report EI 2001-33.

[20] Moorthy, R.L., H.G. Wee, W.C. Ng, C.P. Teo. 2003. Cyclic deadlock prediction and avoidance for zone
controlled AGV system. International Journal of Production Economics. 83, 3, 309-324.

[21] Potvin, J.Y., G. Dufour, J.M. Rousseau. 1993. Learning vehicle dispatching with linear programming
models. Computers and Operations Research. 20, 4, 371-380.

[22] Potvin, J.Y., Y. Shen, J.M. Rousseau. 1992. Neural networks for automated vehicle dispatching. Com-
puters and Operations Research. 19, 3/4, 267-276.

[23] Vis, I.F.A., R.de Koster. 2003. Transshipment of containers at a container terminal: an overview.
European Journal of Operational Research. 147, 1-16.

[24] Vis, I.F.A., R.de Koster, K.J. Roodbergen, L.W.P. Peeters. 2001. Determination of the number of
automated guided vehicles required at a semi-automated container terminal. Journal of the Operational
Research Society. 52, 409-417.

[25] Viswanadham, N., Y. Narahari, T.L. Johnson. 1990. Deadlock prevention and deadlock avoidance in
flexible manufacturing systems using Petri net models. IEEE Transactions on Robotics and Automation.
6, 6, 713-723.

[26] Yeh, M.S., W.C. Yeh. 1998. Deadlock prediction and avoidance for zone control AGVs. International
Journal of Production Research. 36, 10, 2879-2889.

[27] AutoMod V 9.0 Reference Manual.

30

