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Abstract. We present the first constant-factor approximation algorithm for a fundamental
problem: the store-and-forward packet routing problem on arbitrary networks. Furthermore, the
queue sizes required at the edges are bounded by an absolute constant. Thus, this algorithm balances
a global criterion (routing time) with a local criterion (maximum queue size) and shows how to get
simultaneous good bounds for both. For this particular problem, approximating the routing time
well, even without considering the queue sizes, was open. We then consider a class of such local
vs. global problems in the context of covering integer programs and show how to improve the local
criterion by a logarithmic factor by losing a constant factor in the global criterion.
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1. Introduction. Recent research on approximation algorithms has focused a
fair amount on bicriteria (or even multicriteria) minimization problems, attempting
to simultaneously keep the values of two or more parameters “low” (see, e.g., [11, 21,
22, 29, 30, 32]). One motivation for this is that real-world problems often require
such balancing. In this work, we consider a family of bicriteria problems that involve
balancing a local capacity constraint (e.g., the maximum queue size at the links of a
packet routing network, the maximum number of facilities per site in facility location)
with a global criterion (resp., routing time, total cost of constructing the facilities).
Since these global criteria are NP-hard to minimize even with no constraint on the
local criterion, we shall seek good approximation algorithms.

1.1. Packet routing. Our main result is a constant-factor approximation al-
gorithm for store-and-forward packet routing, a fundamental routing problem in in-
terconnection networks (see Leighton’s book and survey [14, 15]); furthermore, the
queue sizes will all be bounded by a constant. This packet routing problem has
received considerable attention for more than 15 years and is as follows.

Definition 1.1 (store-and-forward packet routing). We are given an arbitrary
N -node routing network (directed or undirected graph) G and a set {1, 2, . . . ,K} of
packets which are initially resident (respectively) at the (multi-)set of nodes {sk : 1 ≤
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k ≤ K} of G. Each packet k is a message that needs to be routed to some given
destination node tk in G. We have to route each packet k from sk to tk, subject to
the following: (i) each packet k must follow some path in G; (ii) each edge traversal
takes one unit of time; (iii) no two packets can traverse the same edge at the same
unit of time; and (iv) packets are only allowed to queue along the edges of G during
the routing stage. There are no other constraints on the paths taken by the packets:
these can be arbitrary paths in G. The NP-hard objective is to select a path for each
packet and to coordinate the routing so that the elapsed time by which all packets have
reached their destinations is minimized; i.e., we wish to keep this routing time as small
as possible.

Extensive research has been conducted on this problem: see [14, 15] and the
references therein. The most desirable type of algorithm here would, in addition
to keeping the routing time and queue sizes low, also be distributed: given a set
of incoming packets and their (source, destination) values, any switch (node of G)
decides what to do with them next, without any other knowledge of the (multi-)set
{(sk, tk) : 1 ≤ k ≤ K}. This would be ideal for parallel computing. (Distributed
algorithms in this context are also termed on-line algorithms in the literature.) Several
such ingenious results are known for specific networks such as the mesh, butterfly, or
hypercube. For instance, given any routing problem with N packets on an N -node
butterfly, there is a randomized on-line routing algorithm that, with high probability,
routes the packets in O(logN) time using O(1)-sized queues [28]. (We let e denote
the base of the natural logarithm, and, for x > 0, lg x, lnx, and ln+ x, respectively,
denote log2 x, loge x, and max{loge x, 1}. Also, Z+ will denote the set of nonnegative
integers.)

Good on-line algorithms here, however, are not always feasible or required for the
following reasons:

• A large body of research in routing is concerned with fault-tolerance: the
possibility of G being a reasonable routing network when its nodes are subject
to (e.g., random or worst-case) faults. See, e.g., Kaklamanis et al. [12],
Leighton, Maggs, and Sitaraman [18], and Cole, Maggs, and Sitaraman [6].
In this case, we do not expect good on-line algorithms, since the fault-free
subgraph Ĝ of G has an unpredictable structure. Indeed, a fair amount
of research in this area, e.g., [6, 18], focuses on showing that Ĝ is still a
reasonably good routing network under certain fault models, assuming global
information about {(sk, tk)} and the fault structure.

• Ingenious on-line algorithms for specific networks such as the butterfly in
the fault-free case [28] are only existentially (near-)optimal. For instance,
the O(lgN) routing time of [28] is existentially optimal to within a con-
stant factor, since there are families of routing instances that require Θ(lgN)
time. However, the worst-case approximation ratio can be Θ(lgN). It seems
very hard (potentially impossible) to devise on-line algorithms that are near-
optimal on each instance.

• The routing problem can be considered as a variant of unit-demand multi-
commodity flow, where all arc capacities are the same, queuing is allowed, and
where delivery time is also a crucial criterion. (Algorithms for this problem
that require just O(1) queue sizes, such as ours, will also scale with network
size.) For such flow problems, the routing problems often have to be run
repeatedly. It is therefore reasonable to study off-line approximation algo-
rithms, i.e., efficient algorithms that use the knowledge of the network and of
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{(sk, tk)} and have a good approximation ratio.

Furthermore, it seems like a difficult problem to construct on-line routing algo-
rithms for arbitrary networks, even with, say, a polylogarithmic approximation guar-
antee. See Ostrovsky and Rabani [26] for good on-line packet scheduling algorithms,
given the path to be traversed for each packet.

By combining some new ideas with certain powerful results of Leighton, Maggs,
and Rao [16], Leighton, Maggs, and Richa [17], Karp et al. [13], and Lin and Vit-
ter [20], we present the first polynomial-time off-line constant-factor approximation
algorithm for the store-and-forward packet routing problem. Furthermore, the queue
sizes of the edges are bounded by O(1). No approximation algorithms with a sublog-
arithmic approximation guarantee were known for this problem, to the best of our
knowledge. For instance, a result from the seminal work of Leighton and Rao [19]
leads to routing algorithms that are existentially good. Their network embedding of
G ensures that there is some routing instance on G for which their routing time is to
within an O(lgN) factor of optimal, but no good worst-case performance guarantee is
known. We may attempt randomized rounding on some suitable linear programming
(LP) relaxation of the problem; however, apart from difficulties like controlling path
lengths, it seems hard to get a constant-factor approximation using this approach for
families of instances where the LP optimal value grows as o(lg(N+K)). Our approach
uses the rounding theorem of [13] to select the set of paths that will be used in the
routing algorithm of [17]. The analysis involves an interesting trade-off between the
“dilation” criterion (maximum path length) and the “congestion” criterion (maximum
number of paths using any edge).

1.2. Covering integer programs. Let vT denote the transpose of a (column)
vector v. In the second part of the paper, we continue to address the problem of
simultaneously obtaining good bounds on two criteria of a problem. We focus on
the NP-hard family of covering integer programs (CIPs), which includes the well-
known set cover problem. This class of problems exhibits features similar to our
packet routing problem: the latter can be formulated as a covering problem with side
packing constraints. In CIPs, the packing constraints are upper bound constraints on
the variables.

Definition 1.2 (CIPs). Given A ∈ [0, 1]m×n, b ∈ [0,∞)m, and c ∈ [0, 1]n, a
CIP seeks to minimize cT · x subject to Ax ≥ b, x ∈ Zn

+, and 0 ≤ xj ≤ dj for each
j (the dj ∈ Z+ are given integers). If A ∈ {0, 1}m×n, then we assume without loss
of generality (w.l.o.g.) that each bi is a positive integer. Define B = mini bi; w.l.o.g.,
we may assume B ≥ 1. A CIP is uncapacitated if for all j, dj = ∞.

It is well known that the two assumptions above are w.l.o.g. (i) If A ∈ {0, 1}m×n,
then we can clearly replace each bi by 	bi
. (ii) Given a CIP with some Ai,j > bi, we
can normalize it by first setting Ai,j := bi for each such (i, j) and then scaling A and
b uniformly so that for all k, (bk ≥ 1 and max	Ak,	 ≤ 1). This is easily seen to result
in an equivalent CIP.

To motivate the model, we consider a concrete CIP example: a facility location
problem that generalizes the set cover problem. Here, given a digraph G, we want
to place facilities on the nodes suitably so that every node has at least B facilities in
its out-neighborhood. Given a cost-per-facility cj of placing facilities at node j, we
desire to place the facilities in a way that will minimize the total cost. It is easy to see
that this NP-hard problem is a CIP, with the matrix A having only zeroes and ones.
This problem illustrates one main reason for the constraints {xj ≤ dj}: for reasons
of capacity, security, or fault-tolerance (not many facilities will be damaged if, for
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instance, there is an accident/failure at a node), we may wish to upper bound the
number of facilities that can be placed at individual sites. The more general problem
of “file sharing” in a network has been studied by Naor and Roth [24], where again,
the maximum load (number of facilities) per node is balanced with the global criterion
of total construction cost. For similar reasons, CIPs typically include the constraints
{xj ≤ dj : 1 ≤ j ≤ n}. In fact, the case where dj = 1 for all j is quite common.

Dobson [7] and Fisher and Wolsey [8] study a natural greedy algorithm GA for
CIPs. For a given CIP, let OPT denote the value of its optimal integral solution.
We define γ1

.
= mini,j{Ai,j/cj : Ai,j = 0} and γ2

.
= maxj(

∑m
i=1Ai,j/cj). Then, it is

shown in [8] that GA produces a solution of value at most OPT (1 + ln(γ2/γ1)). If
each row of the linear system Ax ≥ b is scaled so that the minimum nonzero entry
in the row is at least 1, it is shown in [7] that GA’s output is at most OPT (1 +
ln(maxj

∑n
i=1Ai,j)).

Another well-known approach to CIPs is to start with their LP relaxation, wherein
each xj is allowed to be a real in the range [0, dj ]. Throughout, we shall let y∗ denote
the LP optimum of a given CIP. Clearly, y∗ is a lower bound on OPT . Bertsimas and
Vohra [5] conduct a detailed study of approximating CIPs and present an approxima-
tion algorithm which finds a feasible solution whose value is O(y∗ lgm) [5]. Previous
work of this paper’s first author [31] presents an algorithm that computes an x ∈ Zn

+

such that Ax ≥ b and

cT · x ≤ a0y∗ ·max{ln+(mB/y∗)/B,

√
ln+(mB/y∗)/B}(1.1)

for some absolute constant a0 > 0.1 The bound “xj ≤ dj” may not hold for all j, but
we will have for all j that

xj ≤ dj ·
(

1 + a1 max

{
ln+(mB/y∗)/B,

√
ln+(mB/y∗)/B

})
(1.2)

for a certain absolute constant a1 > 0. A related result is presented in [24] for file-
sharing.

If B is “large” (greater than a certain threshold), then these results significantly
improve previous results in the “global” criterion of keeping cT · x small while com-
promising somewhat on the “local” capacity constraints {xj ≤ dj}. This is a common
approach in bicriteria approximation: losing a small amount in each criterion to keep
the maximum such loss “low.” In particular, if y∗ grows at least as fast as me−O(B),
then the output value here is O(y∗), while maintaining xj = O(dj) for all j. (Also, if
the CIP is uncapacitated, then the above is a significant improvement if B is large.)

We see from (1.2) that in the case where ln+(mB/y∗) ≤ B, both (cT · x)/y∗ and
the maximum “violation” maxj xj/dj are bounded by constants, which is reasonable.
Thus, we consider the case where ln+(mB/y∗) > B. Here, however, the violation
maxj xj/dj can be as high as 1 + a1 ln+(mB/y∗)/B, which is unsatisfactory. If it
is not feasible (e.g., for capacity/fault-tolerance reasons) to deviate from the local
constraints by this much, then even the gain in the global criterion (caused by the
large value of B) will not help justify such a result. Therefore, a natural question is:
is it possible to lose a small amount in the global criterion, while losing much less
in the local criterion (i.e., in maxj xj/dj), in the case where ln+(mB/y∗) > B? We
answer this in the affirmative.

1Recall that ln+(x) denotes max{ln(x), 1}. To parse the term “ln+(mB/y∗)/B”, note that it is
ln(mB/y∗)/B if y∗ ≤ me−B and is O(1) otherwise.
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(a) For the important special case of unweighted CIPs (for all j, cj = 1), consider
the case ln+(mB/y∗) > B. Then, for any parameter ε, 0 < ε < 1, we present an
algorithm that outputs an x with

(i) xj ≤ 	dj/(1− ε)
 for all j, where
(ii) the objective function value is at most a2y

∗(1/(1−ε)+(1/ε2) ln+(mB/y∗)/B)
for an absolute constant a2 > 0.

Note the significant improvement over (1.1) and (1.2), particularly if ε is a con-
stant: by losing just a constant factor in the output value of the objective function,
we have ensured that each xj/dj is bounded by a constant (at most 1/(1− ε) + 1/dj).
This is an improvement over the bound stated in (1.2). In our view, ensuring little loss
in the local criterion here is quite important as it involves all the variables xj (e.g.,
all the nodes of a graph in facility location) and since maxj xj/dj may be required to
be low due to physical and other constraints.

(b) For the case where the coefficient matrix A has only zeroes and ones and
where a feasible solution (i.e., for all j, xj ≤ dj) to a (possibly weighted) CIP is
really required, we present an approximation algorithm with output value at most
O(y∗ ln+(m/y∗)). This works whether ln+(mB/y∗) > B or not. While incomparable
with the results of [7, 8], this is better if y∗ is bigger than a certain threshold. This
is also seen to be an improvement over the O(y∗ lgm) bound of [5] if y∗ ≥ ma, where
a ∈ (0, 1) is an absolute constant.

Thus, this work presents improved local vs. global balancing for a family of prob-
lems: the basic packet routing problem (the first constant-factor approximation) and
CIPs (gaining more than a constant factor in the local criterion while losing a constant
factor in the global criterion). The structure of the rest of the paper is as follows.
In section 2, we discuss the algorithm for the packet routing problem, which consists
mainly of three steps: (1) constructing and solving an LP relaxation (section 2.1);
(2) obtaining a set of routes via suitable rounding (section 2.2); and (3) scheduling
the packets (section 2.3) using the algorithm of [17]. The nature of our LP relaxation
also provides an interesting re-interpretation of our result, as shown by Theorem 2.4
in section 2.3. We discuss in section 2.4 an extension of our idea to a more general
setting, where the routing problem is replaced by a canonical covering problem. In
section 3, we discuss our results for the general CIPs. We present our improved local
vs. global balancing for unweighted CIPs in section 3.1; the case where xj ≤ dj is
really required for all j is handled in section 3.2 for the case where the coefficient
matrix has only zeroes and ones. (Note, for instance, that the coefficient matrix has
only zeroes and ones for the facility location problem discussed in section 1.2.)

2. Approximating the routing time to within a constant factor. We re-
fer the reader to the introduction for the definition and motivation for packet routing.
Leighton, Maggs, and Rao, in a seminal paper, studied the issue of scheduling the
movement of the packets given the path to be traversed by each packet [16]. They
showed that the packets can be routed in time proportional to the sum of the con-
gestion and dilation of the paths selected for each packet (see the sentence preceding
section 1.2 for the definition of these two parameters). However, they did not address
the issue of path selection; one motivation for their work is that paths can plausi-
bly be selected using, e.g., the well-known “random intermediate destinations” idea
[33, 34]. However, no general results on path selection, and hence on the time needed
for packet routing, were known for arbitrary networks G. We address this issue here
by studying the path selection problem.
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Theorem 2.1. There are constants c′, c′′ > 0 such that the following holds. For
any packet routing problem on any network, there is a set of paths and a corresponding
schedule that can be constructed in polynomial time such that the routing time is at
most c′ times the optimal. Furthermore, the maximum queue size at each edge is
bounded by c′′.

We shall denote any path from sk to tk as an (sk, tk)-path. Given a (directed)
path P , E(P ) will denote its set of (directed) edges.

2.1. A linear programming relaxation. Consider any given packet routing
problem. Let us consider any feasible solution for it, where packet k is routed on path
Pk. Let D denote the dilation of the paths selected, i.e., D is the length of a longest
path among the Pk. Clearly, the time to route all the packets is bounded below by
D. Similarly, let C denote the congestion of the paths selected, i.e., the maximum
number of packets that must traverse any single edge during the entire course of the
routing. Clearly, C is also a lower bound on the time needed to route the packets.

Let N denote the number of nodes in the network and K the number of packets in
the problem. We now present an LP relaxation for the problem; some of the notation
used in this relaxation is explained in the following paragraph.

(ROUTING) min(C +D)/2 subject to
K∑

k=1

xkf ≤ C ∀f ∈ E(G),(2.1)

∑
f∈E(G)

xkf ≤ D ∀k ∈ {1, 2, . . . ,K},(2.2)

N kxk = bk ∀k ∈ {1, 2, . . . ,K},(2.3)

0 ≤ xkf ≤ 1 ∀k ∈ {1, 2, . . . ,K} ∀f ∈ E(G).

The vector x above is basically a “fractional flow” in G, where xkf denotes the
amount of “flow” of packet k on edge f ∈ E(G). The superscript k merely indexes
a packet and does not mean a kth power. The constraints “N kxk = bk” model the
requirement that for packet k, (i) a total of one unit of flow leaves sk and reaches
tk, and (ii) at all other nodes, the net inflow of the flow corresponding to packet k,
equals the net outflow of the flow corresponding to packet k. For conciseness, we have
avoided explicitly writing out this (obvious) set of constraints above. Constraints
(2.1) say that the “fractional congestion” on any edge f is at most C. Constraints
(2.2) say that the “fractional dilation”

∑
f x

k
f is at most D. This is a somewhat novel

way of relaxing path lengths to their fractional counterparts.

It is easy to see that any path-selection scheme for the packets, i.e., any integral
flow (where all the xkf are either 0 or 1) with congestion C and dilation D, satisfies
the above system of inequalities. Thus, since C and D are both lower bounds on the
length of the routing time for such a path-selection strategy, so is (C +D)/2. Hence,
the optimum value of the LP is indeed a lower bound on the routing time for a given
routing problem: it is indeed a relaxation. Note that the LP has polynomial size since
it has “only” O(Km) variables and O(Km) constraints, where m denotes the number
of edges in the network. Thus, it can be solved in polynomial time. Let {x,C,D}
denote an optimal solution to the program. In section 2.2, we will conduct a certain
type of “filtering” on x. Section 2.3 will then construct a path for each packet and
then invoke the algorithm of [17] for packet scheduling.
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2.2. Path filtering. The main ideas now are to decompose x into a set of “flow
paths” via the “flow decomposition” approach and then to adapt the ideas in Lin-
Vitter [20] to “filter” the flow paths by effectively eliminating all flow paths of length
more than 2D.

The reader is referred to section 3.5 of [1] for the well-known flow decomposition
approach. This approach efficiently transforms x into a set of flow paths that satisfy
the following conditions. For each packet k, we get a collection Qk of flows along
(sk, tk)-paths; each Qk has at most m paths. Let Pk,i denote the ith path in Qk.
Pk,i has an associated flow value zk,i ≥ 0 such that for each k,

∑
i zk,i = 1. (In other

words, the unit flow from sk to tk has been decomposed into a convex combination of
(sk, tk)-paths.) The total flow on any edge f will be at most C:

∑
(k,i):f∈E(Pk,i)

zk,i =

K∑
k=1

xkf ≤ C;(2.4)

the inequality in (2.4) follows from (2.1). Also, let |P | denote the length of (i.e., the
number of edges in) a path P . Importantly, the following bound will hold for each k:∑

i

zk,i|Pk,i| =
∑

f∈E(G)

xkf ≤ D(2.5)

with the inequality following from (2.2).
The main idea now is to “filter” the flow paths so that only paths of length at

most 2D remain. For each k, define

gk =
∑

i:|Pk,i|>2D

zk,i.

It is to easy to check via (2.5) that gk ≤ 1/2 for each k. Thus, suppose we define new
flow values {yk,i} as follows for each k: yk,i = 0 if |Pk,i| > 2D, and yk,i = zk,i/(1−gk)
if |Pk,i| ≤ 2D. We still have the property that we have a convex combination of flow
values:

∑
i yk,i = 1. Also, since gk ≤ 1/2 for all k, we have yk,i ≤ 2zk,i for all k, i.

Therefore, (2.4) implies that the total flow on any edge f is at most 2C:∑
(k,i):f∈E(Pk,i)

yk,i ≤ 2C.(2.6)

Most importantly, by setting yk,i = 0 for all the “long” paths Pk,i (those of length
more than 2D), we have ensured that all the flow paths under consideration are of
length at most O(D). We denote the collection of flow paths for packet k by Pk. For
ease of exposition, we will also let yP denote the flow value of any general flow path
P .

Remarks. We now point out two other LP relaxations which can be analyzed
similarly and which yield slightly better constants in the approximation guarantee.

• It is possible to directly bound path-lengths in the LP relaxation so that
filtering need not be applied; one can show that this improves the approx-
imation guarantee somewhat. On the other hand, such an approach leads
to a somewhat more complicated relaxation, and furthermore, binary search
has to be applied to get the “optimal” path-length. This, in turn, entails
potentially O(lgN) calls to an LP solver, which increases the running time.
Thus, there is a trade-off involved between the running time and the quality
of approximation.
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• In our LP formulation, we could have used a variableW to stand for max{C,D}
in place of C and D; the problem would have been to minimize W subject to
the fractional congestion and dilation being at most W . Since W is a lower
bound on the optimal routing time, this is indeed a relaxation; using our ap-
proach with this formulation leads to a slightly better constant in the quality
of our approximation. Nevertheless, we have used our approach to make the
relationship between C and D explicit.

2.3. Path selection and routing. Note that {yP : P ∈ ⋃K
k=1 Pk} is a frac-

tional feasible solution to the following set of inequalities:∑
k

∑
P∈Pk,(i,j)∈E(P )

yP ≤ 2C ∀f ∈ E(G),

∑
P∈Pk

yP = 1 ∀k.

To select one path from Pk for each packet k, we need to modify the above fractional
solution to an integral 0-1 solution. To ensure that the congestion does not increase
by much, we shall use the following rounding algorithm of [13].

Theorem 2.2 (see [13]). Let A be a real valued r×s matrix and y be a real-valued
s-vector. Let b be a real-valued vector such that Ay = b and t be a positive real number
such that, in every column of A, (i) the sum of all the positive entries is at most t
and (ii) the sum of all the negative entries is at least −t. Then we can compute an
integral vector y such that for every i, either yi = �yi� or yi = 	yi
 and Ay = b where
bi − bi < t for all i. Furthermore, if y contains d nonzero components, the integral
approximation can be obtained in time O(r3 lg(1 + s/r) + r3 + d2r + sr).

To use Theorem 2.2, we first transform our linear system above to an equivalent
system ∑

k

∑
P∈Pk,(i,j)∈E(P )

yP ≤ 2C ∀ (i, j) ∈ E(G),

∑
P∈Pk

(−2D)yP = −2D ∀ k.

The set of variables above is {yP : P ∈ ⋃K
k=1 Pk}. Note that yP ∈ [0, 1] for

all these variables. Furthermore, in this linear system, the positive column sum is
bounded by the maximum length of the paths in P1 ∪P2 ∪ · · · ∪PK . Since each path
in any Pk is of length at most 2D due to our filtering, each positive column sum is
at most 2D. Each negative column sum is clearly −2D. Thus, the parameter t for
this linear system, in the notation of Theorem 2.2, can be taken to be 2D. Hence by
Theorem 2.2, we can obtain in polynomial time an integral solution y satisfying∑

k

∑
P∈Pk,f∈E(P )

yP ≤ 2C + 2D ∀ f ∈ E(G),(2.7)

∑
P∈Pk

(−2D)yP < 0 ∀ k,(2.8)

yP ∈ {0, 1} ∀ P ∈
K⋃

k=1

Pk.(2.9)
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For each packet k, by conditions (2.8) and (2.9), we have
∑

P∈Pk yP ≥ 1. (Note the
crucial role of the strict inequality in (2.8).) Thus, for each packet k, we have selected
at least one path from sk to tk with length at most 2D; furthermore, the congestion is
bounded by 2C+2D (from (2.7)). If there are two or more such (sk, tk)-paths, we can
arbitrarily choose one among them, which of course cannot increase the congestion.
The next step is to schedule the packets, given the set of paths selected for each
packet. To this end, we use the following result of [17], which provides an algorithm
for the existential result of [16].

Theorem 2.3 (see [17]). For any set of packets with edge-simple paths having
congestion c and dilation d, a routing schedule having length O(c + d) and constant
maximum queue size can be found in random polynomial time.

Applying this theorem to the paths selected from the previous stage, which have
congestion c ≤ 2C + 2D and dilation d ≤ 2D, we can route the packets in time
O(C + D). Recall that (C + D)/2 is a lower bound on the length of the optimal
schedule. Thus, we have presented a constant-factor approximation algorithm for the
off-line packet routing problem; furthermore, the queue sizes are also bounded by an
absolute constant in the routing schedule produced. An interesting related point is
that our LP relaxation is reasonable: its integrality gap (worst-case ratio between the
optima of the integral and fractional versions) is bounded above by O(1).

An alternative view. There is an equivalent interesting interpretation of Theo-
rem 2.1.

Theorem 2.4. Suppose we have an arbitrary routing problem on an arbitrary
graph G = (V,E); let L be any nonnegative parameter (e.g., O(1), O(lg n), O(

√
n)).

Let {(sk, tk) : 1 ≤ k ≤ K} be the set of source-destination pairs for the packets.
Suppose we can construct a probability distribution Dk on the (sk, tk)-paths for each
k such that if we sample, for each packet k, an (sk, tk)-path from Dk independently of
the other packets, then we have (a) for any edge e ∈ E(G), the expected congestion on
e is at most L, and (b) for each k, the expected length of the (sk, tk)-path chosen is at
most L. Then, there is a choice of paths for each packet such that the congestion and
dilation are O(L). Thus, the routing can be accomplished in O(L) time using constant-
sized queues; such a routing can also be constructed off-line in time polynomial in |V |
and K.

We remark that the converse of Theorem 2.4 is trivially true: if an O(L) time
routing can be accomplished, we simply let Dk place all the probability on the (sk, tk)-
path used in such a routing.

Proof of Theorem 2.4. Let πk
P denote the probability measure of any (sk, tk)-path

P under the distribution Dk. Let supp(Dk) denote the support of Dk, i.e., the set
of (sk, tk)-paths on which Dk places nonzero probability. The proof follows from the
fact that for any (i, j) ∈ E(G),

xki,j ≡
∑

P :(i,j)∈E(P ), P∈supp(Dk)

πk
P

is a feasible solution to (ROUTING), with C,D replaced by L. Hence, by our filter-
round approach, we can construct one path for each packet k such that the congestion
and dilation are O(L). As seen above, the path selection and routing strategies can
be found in polynomial time.

We consider the above interesting because many fault-tolerance algorithms use
very involved ideas to construct a suitable (sk, tk)-path for (most) packets [6]. These
paths will need to simultaneously have small lengths and lead to small edge congestion.
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Theorem 2.4 shows that much more relaxed approaches could work: a distribution
that is “good” in expectation on individual elements (edges, paths) is sufficient. Recall
that in many “discrete ham-sandwich theorems” (Beck and Spencer [4], Raghavan
and Thompson [27]), it is easy to ensure good expectation on individual entities (e.g.,
the constraints of an integer program), but it is much more difficult to construct one
solution that is simultaneously good on all these entities. Our result shows one natural
situation where there is just a constant-factor loss in the process.

2.4. Extensions. The result above showing a constant integrality gap for packet
routing can be extended to a general family of combinatorial packing problems as
follows. Let Sk be the family of all the subsets of vertices S such that sk ∈ S and
tk ∈ S. Recall that the (sk, tk)-shortest path problem can be solved as an LP via the
following covering formulation:

min
∑
i,j

ci,jx
k
i,j subject to

∑
(i,j)∈E: i∈S,j /∈S

xki,j ≥ 1 ∀S ∈ Sk,(2.10)

xki,j ≥ 0 ∀ (i, j) ∈ E(G).

Constraint (2.10) expresses the idea that “flow” crossing each s-t cut is at least 1.
The following is an alternative relaxation for the packet routing problem:

(ROUTING-II) min(C +D)/2 subject to
K∑

k=1

xki,j ≤ C ∀ (i, j) ∈ E(G),

∑
i,j

xki,j ≤ D ∀ k,
∑

(i,j)∈E: i∈S,j /∈S

xki,j ≥ 1 ∀S ∈ Sk,(2.11)

xki,j ∈ [0, 1] ∀ k, i, j.
We can use the method outlined in sections 2.1, 2.2, and 2.3 to show that the

optimal solution of (ROUTING-II) is within a constant factor of the optimal routing
time. A natural question that arises is whether the above conclusion holds for more
general combinatorial packing problems. To address this question, we need to present
an alternative (polyhedral) perspective of our (path) selection routine. First we recall
some standard definitions from polyhedral combinatorics. The reader is referred to
[10] for related concepts.

Suppose we are given a finite set N = {1, 2, . . . , n} and a family F of subsets
of N . For any S ⊆ N , let χS ∈ {0, 1}n denote the incidence vector of S. We shall
consider the problem

(OPT ) min{cTχF : F ∈ F},
where c ∈ �n

+ is a weight function on the elements of N .
Definition 2.5 (see [25]). The blocking clutter of F is the family B(F), whose

members are precisely those H ⊆ N that satisfy the following:
P1. Intersection: H ∩ F = ∅ for all F ∈ F .
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P2. Minimality: If H ′ is any proper subset of H, then H ′ violates property P1.
A natural LP relaxation for (OPT ) is

min{cTx : x ∈ Q}, where Q = {xTχH ≥ 1 for all H ∈ B(F), xi ≥ 0 for all i}.

Q is known as the blocking polyhedron of F . The following result is well known and
easy to check:

Q ∩ Zn = {x ∈ Zn : ∃F ∈ F such that ∀i ∈ F, xi ≥ 1}.

For several classes of clutters (set-systems), it is known that the extreme points
of Q are the integral vectors that correspond to incidence vectors of elements in
F . By Minkowski’s theorem [25], every element in Q can be expressed as a convex
combination of the extreme points and extreme rays in Q. For blocking polyhedra,
the set of rays is

{x ∈ �n : ∀i, xi ≥ 0}.

Suppose we have a generic integer programming problem that is similar to (ROUTING-
II), except for the fact that for each k, (2.11) is replaced by the constraint∑

i∈H

xki ≥ 1 ∀ H ∈ B(Fk);

Fk can be any clutter that is well-characterized by its blocking polyhedron Qk (i.e.,
the extreme points of the blocking polyhedron Qk are incidence vectors of the elements
of the clutter Fk). Thus, we have a generalization of (ROUTING-II):

(BLOCK) min(C +D)/2 subject to
K∑

k=1

xki ≤ C ∀ i ∈ N ,
∑
i

xki ≤ D ∀ k,(2.12)

∑
i∈H

xki ≥ 1 ∀ k and ∀ H ∈ B(Fk),

xki ∈ {0, 1} ∀ k and ∀i ∈ N .(2.13)

Note that the variables x are now indexed by elements of the set N . In the previously
discussed special cases, the elements of N are edges or pairs of nodes.

The LP relaxation of (BLOCK) replaces the constraint (2.13) by

0 ≤ xki ≤ 1 ∀ k = 1, . . . ,K ∀i ∈ N .

Theorem 2.6. The optimal integral solution value of (BLOCK) is at most a
constant factor times the optimal value of the LP relaxation.

Proof. Let (xki : k = 1, . . . ,K; i ∈ N ) denote an optimal solution to the LP
relaxation. By Caratheodory’s theorem [25], for each fixed k, (xki : i ∈ N ) can
be expressed as a convex combination of extreme points and extreme rays of the
blocking polyhedron Qk. However, note that the objective function can improve
only by decreasing the value of (xki ) coordinatewise, as long as the solution remains
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feasible. Furthermore, the extreme rays of the blocking polyhedron correspond to
vectors v with each vi nonnegative. Thus, w.l.o.g., we may assume that the LP
optimum is lexicographically minimal. This ensures that the optimal solution (xki ) can
be expressed as a convex combination of the extreme points of the polyhedron alone.
As seen above, the extreme points in this case are incidence vectors of elements of
the kth clutter (we use polyhedral language to let “kth clutter” denote the set-system
Fk).

Let C andD denote the fractional congestion and fractional dilation of the optimal
solution obtained by the LP relaxation of (BLOCK). Let Ak

1 , A
k
2 , . . . denote incidence

vectors of the elements in the kth clutter, and let Ak
j (i) be the ith coordinate of Ak

j .
Then we have a convex combination for each k:

∀i, xki =
∑
j

αk
j ·Ak

j (i), where

αk
j ≥ 0 ∀j, and

∑
j

αk
j = 1.

Thus, by constraints (2.12),
∑

j:|Ak
j
|≤2D α

k
j ≥ 1/2, since

∑
j α

k
j |Ak

j | ≤ D.

By filtering out those Ak
j with size greater than 2D, we obtain a set of canonical

objects for each k, whose sizes are at most 2D. By scaling the αk
j by a suitable factor,

we also obtain a new set of αk
j such that

∑
j:|Ak

j
|≤2D

αk
j = 1, αk

j ≤ 2αk
j .

Using these canonical objects and {αk
j } as the input to Theorem 2.2, we obtain a

set of objects (one from each clutter) such that the dilation is not more than 2D and
the congestion not more than 2(C +D). Hence the solution obtained is at most O(1)
times the LP optimum.

Remark. As pointed out by one of the referees, it is not clear whether the lexi-
cographically minimal optimal solution can be constructed in polynomial time. The
above result is thus only about the quality of the LP relaxation. It would be nice
to find the most general conditions under which the above can be turned into a
polynomial-time approximation algorithm.

3. Improved local vs. global balancing for covering. Coupled with the
results of [16, 17], our approximation algorithm for the routing time (a global crite-
rion) also simultaneously kept the maximum queue size (a local capacity constraint)
constant; our approach there implicitly uses the special structure of the cut covering
formulation. We now continue the study of such balancing in the context of CIPs.
The reader is referred to section 1.2 for the relevant definitions and history of CIPs. In
section 3.1, we will show how to approximate the global criterion well without losing
much in the “local” constraints {xj ≤ dj}. In section 3.2, we present approximation
algorithms for a subfamily of CIPs where xj ≤ dj is required for all j. One of the key
tools used in sections 3.1 and 3.2 is Theorem 3.3, which builds on an earlier rounding
approach (Theorem 3.2) of [31].
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3.1. Balancing local with global. The main result of section 3.1 is Corol-
lary 3.5. This result is concerned with unweighted CIPs and the case where
ln+(mB/y∗) > B. In this setting, Corollary 3.5 shows how the local capacity con-
straints can be violated much less in comparison with the results of [31], while keeping
the objective function value within a constant factor of that of [31].

Let exp(x) denote ex; given any nonnegative integer k, let [k] denote the set
{1, 2, . . . , k}. We start by reviewing the Chernoff–Hoeffding bounds in Theorem 3.1.
Let G(µ, δ)

.
= (exp(δ)/(1 + δ)(1+δ))µ, H(µ, δ)

.
= exp(−µδ2/2).

Theorem 3.1 (see [23]). Let X1, X2, . . . , X	 be independent random variables,

each taking values in [0, 1], R =
∑	

i=1Xi, and E[R] = µ. Then, for any δ ≥ 0,
Pr(R ≥ µ(1 + δ)) ≤ G(µ, δ). Also, if 0 ≤ δ ≤ 1, Pr(R ≤ µ(1− δ)) ≤ H(µ, δ).

We shall use the following easy fact:

∀µ ≥ 0 ∀δ ∈ [0, 1], G(µ, δ) ≤ exp(−µδ2/3).(3.1)

From now on, we will let {x∗j : j ∈ [n]} be the set of values for the variables in
an arbitrary feasible solution to the LP relaxation of the CIP; thus, 0 ≤ x∗j ≤ dj . (In

particular, x∗ could be an optimal LP solution.) Let y∗ = cT ·x∗. Recall that the case
where ln+(mB/y∗) ≤ B is handled well in [31]; thus we shall assume ln+(mB/y∗) >
B. We now summarize the main result of [31] for CIPs as a theorem. A key ingredient
of Theorem 3.2 is the FKG inequality [9].

Theorem 3.2 (see [31]). For any given CIP, suppose we are given any 1 ≤ β <
α < κ such that

(1−H(Bα, 1− β/α))m > G(y∗α, κ/α− 1)(3.2)

holds. Then we can find in deterministic polynomial time a vector z = (z1, z2, . . . , zn)
of nonnegative integers such that (a) (Az)i ≥ biβ for each i ∈ [m], (b)

∑
j cjzj ≤ y∗κ,

and (c) zj ≤ 	αx∗j
 ≤ 	αdj
 for each j ∈ [n].
The next theorem presents a rounding algorithm by building on Theorem 3.2.
Theorem 3.3. There are positive constants a3 and a4 such that the follow-

ing holds. Given any parameter ε, 0 < ε < 1, let α be any value such that α ≥
(a3/ε

2) max{ln+(mB/y∗)/B, 1}. Then we can find in deterministic polynomial time
a vector z = (z1, z2, . . . , zn) of nonnegative integers such that (a) (Az)i ≥ biα(1 − ε)
for each i ∈ [m], (b) cT · z ≤ a4y∗α, and (c) zj ≤ 	αx∗j
 ≤ 	αdj
 for each j ∈ [n].

Remark. It will be shown in the proof of Theorem 3.3 that we can choose, for
instance, a3 = 3 and a4 = 2. Since there is a trade-off between a3 and a4 that can
be fine-tuned for particular applications, we have avoided using specific values for a3
and a4 in the statement of Theorem 3.3.

The following simple proposition will also be useful.
Proposition 3.4. If 0 < x < 1/e, then 1− x > exp(−1.25x).
Proof of Theorem 3.3. We choose a3 = 3 and a4 = 2. In the notation of Theorem

3.2, we take β = α(1 − ε) and κ = a4α. Our goal is to validate (3.2); by (3.1), it
suffices to show that

exp(−y∗α/3) < (1− exp(−Bαε2/2))m.(3.3)

Note that the left- and right-hand sides of (3.3), respectively, decrease and increase
with increasing α; thus, since α ≥ α0

.
= (3/ε2) max{ln+(mB/y∗)/B, 1} it is enough

to prove (3.3) for α = α0. We consider two cases.
Case I. ln+(mB/y∗) ≤ B.
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Thus, α0 = 3/ε2 here. Since B ≥ 1, we have exp(−Bα0ε
2/2) < 1/e. Therefore,

Proposition 3.4 implies that in order to prove (3.3), it suffices to show that

y∗α0/3 ≥ 1.25m exp(−Bα0ε
2/2),

i.e., that y∗/ε2 ≥ 1.25m exp(−1.5B). This is true from the facts that (i) m/y∗ ≤
exp(B) (which follows from the fact that ln(m/y∗) ≤ ln+(mB/y∗) ≤ B), and (ii)
exp(1.5B) ≥ √e exp(B) ≥ 1.25ε2 exp(B).

Case II. ln+(mB/y∗) > B.
Here, it suffices to show that

exp(−y∗ ln+(mB/y∗)/(Bε2)) < (1− exp(−1.5 · ln+(mB/y∗)))m.(3.4)

Recall that ln+(mB/y∗) > B ≥ 1. Therefore, we have mB/y∗ > e, i.e., y∗/(mB) <
1/e. Thus,

(1− exp(−1.5 · ln+(mB/y∗)))m =

(
1−

(
y∗

mB

)1.5
)m

> exp(−1.25m(y∗/(mB))1.5).

The inequality follows from Proposition 3.4. Therefore, to establish (3.4), we just
need show that

y∗ ln+(mB/y∗)/(Bε2) ≥ 1.25 ·
√
y∗

mB
· y

∗

B
,

i.e., that ln+(mB/y∗)/ε2 ≥ 1.25/
√
e, which in turn follows from the facts that

ln+(mB/y∗) ≥ 1 and 1/ε2 ≥ 1. This completes the proof.
Our required result is as follows.
Corollary 3.5. Given any unweighted CIP with ln+(mB/y∗) > B and any

parameter ε, 0 < ε < 1, we can find in deterministic polynomial time a vector v =
(v1, v2, . . . , vn) of nonnegative integers such that (a) Av ≥ b, (b)

∑
j vj ≤ a2y∗(1/(1−

ε) + (1/ε2) ln+(mB/y∗)/B), where a2 > 0 is an absolute constant, and (c) vj ≤
	dj/(1− ε)
 for all j.

Proof. Let α = 	(a3/ε2) ln+(mB/y∗)/B
 and z be as in the statement of Theo-
rem 3.3. Define vj = 	zj/(α(1 − ε))
 for each j. Conditions (a) and (c) are easy to
check, given Theorem 3.3. Since the zj ’s are all nonnegative integers and since the
CIP is unweighted (cj = 1 for all j), condition (b) of Theorem 3.3 shows that at most
a4y

∗α of them can be nonzero. Thus, condition (b) follows since vj ≤ zj/(α(1−ε))+1
if zj > 0 and since vj = 0 if zj = 0.

As mentioned in section 1, this improves the value of maxj xj/dj from
O(ln+(mB/y∗)/B) [31] to O(1/(1 − ε)), while keeping (cT · x)/y∗ relatively small
at O((1/ε2) · ln+(mB/y∗)/B) (as long as ε is a constant bounded away from 1).

3.2. Handling stringent constraints. We now handle the case where the con-
straints xj ≤ dj have to be satisfied and where the coefficient matrix A has only zeroes
and ones. Recall from section 1 that there is a family of facility location problems
where the coefficient matrix has only zeroes and ones; this is an example of the CIPs
to which the following results apply.

We start with a technical lemma.
Lemma 3.6. For any 0 = u0 < u1 ≤ u2 ≤ · · · ≤ ui and any : > 0, the sum

si =
∑i

j=1(uj − uj−1) ln+(:/uj) is at most ui ln+(:/ui) + ui.
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Proof. If u1 ≥ :/e, then si =
∑i

j=1(uj − uj−1) = ui. Otherwise, let r ≥ 1
be the highest index such that ur < :/e. Thus, si = tr + ui − ur, where tr =∑r

j=1(uj − uj−1) ln(:/uj). Since

∑
j=1...r

(uj − uj−1) ln(l/uj) ≤
∫ ur

0

ln(l/x)dx = (x ln(l/x) + x)|ur

0 ,

it follows that tr ≤ ur ln(:/ur) + ur. Hence,

si = tr + ui − ur ≤ ur ln(:/ur) + ui ≤ ui ln+(:/ui) + ui;

the last inequality follows from the fact that for any x ≤ y such that x < :/e,
x ln(:/x) ≤ y ln+(:/y).

The following simple proposition will also help.
Proposition 3.7. For any : > 0 and :′ ≥ 1, ln+(:) ≥ (ln+(::′))/:′.
Proof. The proposition is immediate if ::′ ≤ e. Next note that for any a ≥ e, the

function ga(x) = ln(ax)/x decreases as x increases from 1 to infinity. Therefore, if
: ≤ e and ::′ > e, then

(ln+(::′))/:′ = (ln(::′))/:′ = g	(:
′) ≤ ge(:′) ≤ ge(1) = 1 = ln+(:).

Finally, if : > e and ::′ > e, then (ln+(::′))/:′ = g	(:
′) ≤ g	(1) = ln+(:).

Theorem 3.8. Suppose we are given a CIP with the matrix A having only zeroes
and ones. In deterministic polynomial time, we can construct a feasible solution z to
the CIP with zj ≤ dj for each j, and such that the objective function value cT · z is
O(y∗ ln+(m/y∗)).

Proof. Let a3 and a4 be as in the proof of Theorem 3.3. Define a5 = max{2, 4a3}
and, for any S ⊆ [n], y∗S =

∑
j∈S cjx

∗
j . Starting with S0 = [n], we construct a sequence

of sets S0 ⊃ S1 ⊃ · · · as follows. Suppose we have constructed S0, S1, . . . , Si so far.
Let hi = y∗Si

. If Si = ∅, we stop; or else, if all j ∈ Si satisfy a5 ln+(m/hi)x
∗
j ≤ dj , we

stop. If not, define the proper subset Si+1 of Si to be {j ∈ Si : a5 ln+(m/hi)x
∗
j >

dj}. For all j ∈ (Si − Si+1), we fix zj to be dj ≥ x∗j : note that for all such j,

zj ≤ a5 ln+(m/hi)x
∗
j .

Let St be the final set we construct. If St = ∅, we do nothing more; since zj ≥ x∗j
for all j, we will have Az ≥ b as required. Also, it is easy to check that zj ≤ dj for
all j. Therefore suppose St = ∅. Let α = a5 ln+(m/ht). Since we stopped at the
nonempty set St, we see that αx∗j ≤ dj for all j ∈ St. Recall that for all j ∈ St, we
have fixed the value of zj to be dj ≥ x∗j . Let w denote the vector of the remaining
variables, i.e., the restriction of x∗ to St. Let A′ be the submatrix of A induced by
the columns corresponding to St. We will now focus on rounding each x∗j (j ∈ St) to
a suitable nonnegative integer zj ≤ dj .

Define, for each i ∈ [m],

b′i = bi −
∑
j 
∈St

Ai,jzj ;

since zj ≥ x∗j for all j ∈ St, we get

(A′w)i =
∑
j∈St

Ai,jx
∗
j ≥ b′i ∀i ∈ [m].
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Since each bi and Ai,j is an integer, so is each b′i. Suppose b′i ≤ 0 for some i.
Then, whatever nonnegative integers zj we round the j ∈ St to, we will satisfy the
constraint (Az)i ≥ bi. Therefore, we can ignore such indices i and assume w.l.o.g.
that B′ .= mini b

′
i ≥ 1. (The constraints corresponding to indices i with b′i ≤ 0 can

be retained as “dummy constraints.”) Define ε = 1/2; recall that α = a5 ln+(m/ht).
Therefore Proposition 3.7 shows that

α ≥ 4a3 max{ln+(mB′/ht)/B
′, 1},

i.e., that α ≥ (a3/ε
2) max{ln+(mB′/ht)/B

′, 1}. Thus, by Theorem 3.3, we can round
each x∗j (j ∈ St) to some nonnegative integer zj ≤ 	αx∗j
 ≤ dj in such a manner that

∑
j∈St

cjzj = O(htα), and ∀i ∈ [m], (A′z)i ≥ biα(1− ε) ≥ bi;(3.5)

the last inequality (i.e., that α(1 − ε) ≥ 1/2) follows from the fact that α ≥ a5 ≥ 2.
Therefore we can check that the final solution is indeed feasible. We need only to
bound the objective function value, which we proceed to do now.

We first bound

∑
j 
∈St

cjzj =

t−1∑
i=0

∑
j∈(Si−Si+1)

cjzj .(3.6)

Fix any i, 0 ≤ i ≤ t − 1. Recall that for each j ∈ (Si − Si+1), we set zj = dj ≤
a5 ln+(m/hi)x

∗
j . Thus,

∑
j∈(Si−Si+1)

cjzj ≤ O(ln+(m/hi)
∑

j∈(Si−Si+1)

cjx
∗
j ) = O(ln+(m/hi) · (hi − hi+1)).(3.7)

Setting ui = ht+1−i and substituting (3.7) into (3.6),

∑
j 
∈St

cjzj = O

(
t+1∑
i=2

(ui − ui−1) ln+(m/ui)

)
,(3.8)

where ut+1 = y∗. Now, if St = ∅, (3.8) gives the final objective function value.
Otherwise, if St = ∅, (3.5) shows that∑

j∈St

cjzj = O(htα) = O(u1 ln+(m/u1)).

This, in combination with (3.8) and Lemma 3.6, shows that
∑

j cjzj = O(y∗ ln+(m/y∗)).
This completes the proof.

4. Conclusion. In this paper, we analyze various classes of problems in the
context of balancing global vs. local criteria.

Our main result is the first constant-factor approximation algorithm for the off-
line packet routing problem on arbitrary networks: for certain positive constants
c′ and c′′, we show that given any packet routing problem, the routing time can
efficiently be approximated to within a factor of c′, while ensuring that all edge-
queues are of size at most c′′. Our result builds on the work of [16, 17], while exploiting
an interesting trade-off between a (hard) congestion criterion and an (easy) dilation
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criterion. Furthermore, we show that the result can be applied to a more general
setting, by providing a polyhedral perspective of our technique. Our approach of
appropriately using the rounding theorem of [13] has subsequently been applied by
Bar-Noy et al. [3] to develop approximation algorithms for a family of multicasting
problems. It has also been applied for a family of routing problems by Andrews and
Zhang [2].

The second major result in the paper improves upon a class of results in
multicriteria CIPs. We show that the local criterion of unweighted CIPs can be
improved from an approximately logarithmic factor to a constant factor with the
global criterion not deteriorating by more than a constant factor (i.e., we maintain a
logarithmic factor approximation).

The third main result improves upon a well-known bound for CIPs, in the case
where the coefficient matrix A has only zeroes and ones. We show that the approxi-
mation ratio can be improved from O(y∗ lgm) to O(y∗ ln+(m/y∗)).

Some open questions are as follows. It would be interesting to study our packet
routing algorithm empirically and to fine-tune the algorithm based on experimental
observation. It would also be useful to determine the best (constant) approximation
possible in approximating the routing time. An intriguing open question is whether
there is a distributed packet routing algorithm with a constant-factor approximation
guarantee. Finally, in the context of covering integer programs, can we approximate
the objective function to within bounds such as ours, with (essentially) no violation
of the local capacity constraints?
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